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Abstract:

Background: Malaria remains a major cause of illness and death among children under five in Nigeria, despite
efforts to control transmission. Accurate and reliable prediction of malaria outbreaks is crucial for health authorities
to take timely measures. This study aims to identify the most robust machine learning classification algorithms for
predicting the status of malaria in children under five (0-59 months).

Methods: The 2021 Nigeria Malaria Indicator Survey (NMIS) included 10,655 children under five who were tested
for malaria using the Rapid Diagnostic Test (RDT). Various machine learning models were explored, including
Decision Trees, K-Nearest Neighbor, Naive Bayes, Random Forest, Support Vector Machines, and Survey Logistic
Regression, and their performance was evaluated through metrics such as accuracy, AUC, balanced accuracy, F1-
Score, negative predictive value, precision, sensitivity, and specificity.

Results: Random Forest (RF) is the most robust and balanced classification model due to its superior accuracy
(79%), precision (77%), recall (62%), Fl-score (69%), and AUC (80%). Support Vector Machine (SVM) also
demonstrated strong performance, particularly in accuracy (74%) and AUC (80%). Survey Logistic Regression (SLR)
and Decision Tree (DT) offered moderate results but fell short compared to RF and SVM, indicating the need for
further optimization. Naive Bayes (NB) and K-Nearest Neighbors (KNN) had limitations, making them less reliable for
this task.

Conclusion: In conclusion, the study reveals that RF and SVM are the best classification models for predicting
malaria status in children under five years old. RF is reliable and balanced, while SVM is preferred for recall. SLR
and DT show potential but require optimization. NB and KNN have significant performance gaps, making them less
suitable. These findings will help policymakers and malaria intervention programs address key factors, enabling more
targeted public health interventions to reduce the malaria burden on young children and improve the well-being of
vulnerable populations in Nigeria.

Keywords: Malaria, Machine learning, Classification algorithms, Performance metrics, Rapid diagnostic test, K-
Nearest neighbors.
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1. INTRODUCTION bites. It is prevalent in many tropical and subtropical
developing countries and continues to pose a major health
challenge globally. The World Health Organization lists
the disease as the sixth most common cause of mortality in

Malaria is a potentially fatal epidemic disease that is
spread through parasites that are carried by mosquito
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underdeveloped nations, with sub-Saharan Africa having
the highest rate of severity. As of 2021, there were 247
million reported malaria cases, leading to over 619,000
deaths, with an overwhelming 95% of these fatalities
occurring in sub-Saharan Africa. The most vulnerable
groups are pregnant women and children under five years
old, who represent more than 80% of all malaria-related
deaths [1].

Nigeria, with a population exceeding 230 million, is
one of the countries in the sub-Saharan Africa region that
reports the highest rate of malaria cases [2]. Historically,
Nigeria has experienced widespread malaria for
generations, leading to various approaches to combat it.
The 20th century observed an increase in awareness of the
broad prevalence of malaria, especially after
independence in 1960, when health systems were still in
the early stages of development.

During the period of the 1980s-1990s, malaria cases
increased dramatically as a result of a number of issues,
including a deficient healthcare system, rising pesticide
resistance, and limited availability of efficient therapies
like chloroquine. During the early 2000s, there was a
notable increase in efforts to control malaria, particularly
with the introduction of Insecticide-Treated Nets (ITNs),
indoor residual spraying, and Artemisinin-based
Combination Therapies (ACTs). However, Nigeria
experienced the highest rates of malaria in the early
2000s, mostly as a result of growing resistance to
antimalarial drugs like chloroquine. The World Health
Organization (WHO) determined that malaria was the
main cause of death in Nigeria during this time. In 2010,
Nigeria continued to face a severe malaria epidemic that
primarily affected children under five years of age, making
it one of its biggest issues [1]. Nigeria had a large share of
the malaria epidemic worldwide at this time, with a high
number of cases and fatalities among this susceptible
group. Increased efforts to prevent malaria have resulted
in a little improvement in the situation. Seasonal peaks in
malaria transmission and the return of cases, particularly
during rainy seasons, continue to affect children under the
age of five [3].

Nigeria alone accounts for about 26.8% of global
malaria deaths, reflecting the heavy burden of the disease
in the country. Over 38% of malaria deaths among
children under five occur in Nigeria, translating to more
than 95,000 fatalities annually in this age group. This
situation represents a significant public health challenge
that must be addressed, as the lives of these children are
invaluable. Additionally, children under five are
particularly vulnerable to malaria due to their
underdeveloped immune systems [1, 3, 4]. There are cases
of misdiagnosis resulting in incorrect diagnostic
determinations. These cases can lead to false-negative
predictions, which may lead to unnecessary administration
of antibiotics and drugs, and in uncertain circumstances,
severe malaria may advance. False positive predictions in
incorrect diagnoses prompt the administration of
antimalarial medications and drugs, which may induce
side effects including lethargy, abdominal pain, diarrhoea,

Mthethwa and Melesse

vomiting, and serious consequences [5]. The healthcare
industry and medical professionals require robust and
reliable predictive systems to address the persistent
challenge of malaria misdiagnosis in children under five.
Given the high stakes associated with false positives and
false negatives, especially in vulnerable paediatric
populations, integrating accurate, data-driven tools, such
as machine learning models, has become essential to
improve diagnostic precision and patient outcomes [6, 7].

Machine learning models (which can be supervised or
unsupervised), also referred to as “ML” models, are
methods for creating algorithms that learn from historical
data to forecast future data [5]. Compared to traditional or
classical regression models, Machine Learning (ML)
models have demonstrated superior predictive accuracy
and are more adept at handling a large number of possible
predictors [8]. Traditional statistical models often fail to
capture complex, nonlinear patterns in health data. ML
models can offer improved predictive performance and
flexibility, making them suitable for early malaria risk
identification. ML has led to significant improvements in
every aspect of the health system, from preventive care to
post-treatment care, as a result of its implementation. For
instance, compared to conventional methods, ML can
diagnose diseases earlier. In healthcare, the application of
ML models has emerged as a reliable tool that offers new
opportunities for predicting the status of malaria in
children under five. The purpose of this study is to identify
the most robust machine learning classification algorithms
for predicting malaria status in children under five based
on the NMIS data, which includes individual
socioeconomic and demographic characteristics. These
models can analyze complex patterns across multiple
variables, such as age, anaemia level, use of bed nets, and
geographic location, that traditional methods may not fully
capture [7, 9]. Integrating ML algorithms into NMIS data
will offer insight into the malaria diagnostic process,
especially for high-risk groups like children aged 6-59
months, thereby helping Nigeria significantly enhance
diagnostic accuracy [10]. This, in turn, reduces
misdiagnosis-related risks, improves patient outcomes,
and supports more efficient use of healthcare resources.
Furthermore, their scalability allows integration into
digital health platforms for real-time decision-making,
especially in resource-limited settings. This process
supports clinical care and strengthens public health
planning by identifying high-risk populations and
informing targeted interventions. Thanks to the
predictions made by the best-classified machine learning
model, Nigeria's government, medical professionals, and
hospitals would be better equipped to fight the malaria
outbreak [7, 11-13].

2. MATERIALS AND METHODS

2.1. Data Source

The data included in this research originates from the
Nigeria Malaria Indicator Survey (NMIS), a cross-sectional
survey executed in 2021 aimed at estimating demographic
and health indicators for malaria in the country. This study
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employed a two-stage stratified cluster design comprising
373 rural and 195 urban clusters in the initial stage. In the
second phase, 14,185 homes were designated as sampling
units, comprising 25 households from each metropolitan
region and 25 households from each rural area. The
study's target demographics comprised moms from
randomly selected families aged 15-49 and children from
randomly selected homes aged 6-59 months. The sample
size of this study was 10,655 children under five years old
who were tested for malaria using the Rapid Diagnostic
Test (RDT). The results from the tests were examined
using a binary response variable, which indicates whether
a child under five has tested positive or negative for
malaria.

2.2. Ethical Considerations

Ethical approval was not required since the NMIS data
is a secondary dataset. The NMIS data is accessible in the
public domain of the DHS website. No respondent-linked
confidential information is present in the data.

2.3. Study Variables

The response variables in this study are children under
five years old (6 to 59 months). Initially, the variables were
tested for malaria using the Rapid Diagnostic Test (RDT),
which is a binary variable. The explanatory or independent
variables used in the study include age, gender, mother’s
language, number of women in the household, number of
children under five, household members, birth order
number, region, residence, hemoglobin level, anaemia
level, source of drinking water, type of toilet facility,
children slept under a bed net, type of mosquito bed
net(s), mosquito bed net for sleeping, and number of bed
nets, household items, mother’s educational level, number
of rooms used for sleeping, main floor material, main roof
material, main wall material, availability of transportation,
type of cookstove, type of cooking fuel, availability of
energy source, and wealth index. Previous and numerous
studies suggested the selection of these variables [9, 10,
14-171.

2.4. Data Preprocessing

Data preprocessing is a crucial step to ensure the
accuracy, reliability, and usability of the dataset before
applying machine learning models [18, 19]. This
preprocessing ensured that the dataset was structured,
clean, and balanced, enhancing the robustness of the ML
classification models. Data preprocessing was done via
STATA V.17.0 and SAS 9.4. First, variables such as
country code, phase, and ultimate area unit were deleted
from the dataset with 50% or more missing values [20].
Categorical variables—such as region, residence, mother’s
language, and type of mosquito bed net—were encoded
using one-hot or label encoding methods to make them
suitable for machine learning algorithms. Continuous
variables like hemoglobin level and number of household
members were standardized or normalized where
appropriate to ensure uniformity in scale [21].
Additionally, the issue of having too few positive or
negative malaria cases was handled using resampling

methods such as the Synthetic Minority Over-sampling
Technique (SMOTE), which is an effective way to enhance
classification accuracy in uneven health data [14, 15,
22-24].

2.5. Machine Learning Models

The purpose of this study was to find the best-
classified machine learning model that can accurately
predict malaria status in children under five. The final
dataset was split into training and testing subsets using
stratified sampling to maintain the class distribution. The
data was split into two uneven parts: one larger, which
contained 70% of the data for training, and one smaller,
which contained 30% of the data for testing.
Subsequently, a 10-fold Cross-Validation (CV) was used to
evaluate and compare the classification performance of
different machine learning models in predicting malaria
status among children under five. Reviews of related
studies on predicting malaria status among children under
five contributed to the selection of the six ML models, and
the quality and type of the dataset used were evaluated
during the modeling process [9, 16, 25, 26]. The selected
classification machine learning models include Survey
Logistic Regression, Decision Trees, Random Forest,
Support Vector Machines, Naive Bayes, and K-Nearest
Neighbor. The evaluation or performance metrics used for
testing purposes include accuracy, balanced accuracy,
sensitivity, specificity, precision, negative predictive value,
F1-Score, and the Area Under the ROC Curve (AUC). The
software used for analyses was R (version 9.1.0).

2.5.1. Survey Logistic Regression

Survey Logistic Regression (SLR) is an extension of a
logistic regression model intended for binary or multi-
class classification. In a survey setting, changes are made
to include survey design features like stratification,
clustering, and weighting to ensure that the results truly
represent the target population [27]. These adjustments
enhance the suitability of the survey data and ensure that
the results accurately reflect population-level estimates.
Due to the nature of the NMIS data, which is a cross-
sectional survey conducted in 2021, the Survey Logistic
Regression (SLR) was selected as a suitable classification
model. Weighted loss functions were used in SLR to
include sampling weights, making sure the predictions
represent the whole population instead of just the sample
[28-30].

SLR is used for a binary response variable, where it
can be an occurring event (positive, which indicates the
presence of malaria) or a non-occurring event (negative,
which indicates the absence of malaria) [31]. Since the
survey logistic regression equation incorporates the
survey design features in the model, the dichotomous
dependent variable was defined as Y., h=1, 2, ..., H;
i=1, 2, ..., n; j=1, 2, ..., my, and x,; represneted the row
vector of the explanatory variable for the j* unit in the ith
cluster within the h™ stratum. The probability of an event
occuring, m;=P(Y,;=1), was defined as the probability of
having malaria.
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The formula of survey logistic regression is defined as
follows:

n ..
logit <—hud ) = XnijBa

Thij(D+1)

Where x,; is a covariate matrix, B, is a vector of
unknown parameters and is the expected proportion of the
category. The Pseudo-Maximum Likelihood Estimation
(PMLE) was applied for unknown parameters of the model
and to incorporate the survey design features in the model
for unknown parameters [32, 33].

2.5.2. Decision Trees

Decision Trees (DT) is a well-known supervised
machine learning method frequently utilized for classi-
fication and regression applications. It resembles a
flowchart that adopts a tree structure, making it highly or
easily interpretable and flexible. Since the decision tree
represents a model of decisions in a tree structure, it
consists of three types of nodes: the leaf nodes, the root
node, and the internal nodes, which are commonly
referred to as decision nodes. Each of the three nodes has
its attributes, where the internal node represents a test on
an attribute, each branch indicates the conclusion of the
test, and each leaf node provides a class label or output
value. DT are known to be non-parametric; this means that
they make no distributional assumption about the
underlying data. They are highly versatile and capable of
handling categorical and numerical data [34-36].

2.5.3. Random Forest

Random Forest (RA) is among the most popular
classification models in machine learning. This versatile
ensemble algorithm is widely used to handle regression
and classification data. It functions by creating and
combining several decision trees derived from various
bootstrap samples of the dataset. This process helps to
enhance predictive accuracy and reduce the risk of
overfitting. Employing this process allows the creation of a
collection of uncorrelated trees (randomization tech-
niques), each of which contributes to the final prediction
to increase robustness and control overfitting [37, 38].
This procedure ensures that there is diversity among the
multiple decision trees. One of the major key features of
the random forest is that it is able to deal with high-
dimensional datasets and handle missing data with
minimal preprocessing. Another notable strength of RF is
its capability to estimate feature importance. RF can show
which features are most important by looking at how much
they reduce impurity (like the Gini index or entropy) or by
checking how changing their values affects the model's
accuracy [35, 39].

2.5.4. Support Vector Machines

Support Vector Machines (SVM) are non-parametric
supervised machine learning algorithms wused for
classification, regression, and outlier detection. SVM
handles high-dimensional data and focuses on structural
risk minimization. Its core concept involves identifying the
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optimal hyperplane for separable data and uses kernel
tricks for non-linear data. By using kernel functions, SVM
can map data into higher-dimensional spaces, making it
easier to separate malaria-positive and malaria-negative
cases [40].

2.5.5. Naive Bayes

Naive Bayes (NB) offers a straightforward, probabi-
listic approach to classification, often effective for high-
dimensional data. Although the independence assumption
between predictors may not fully apply here, NB could
serve as a baseline model, particularly useful when many
predictor variables are approximately independent [41].

2.5.6. K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a non-parametric, lazy
learning algorithm used for classification and regression
tasks. It predicts data point labels by analyzing the labels
of its k-nearest neighbors in the feature space. KNN is
effective for smaller datasets and can adapt to complex
decision boundaries. However, it is computationally inten-
sive for large datasets. Proper selection of k-nearest
neighbors is crucial for optimal performance. Additionally,
the algorithm is sensitive to noisy and irrelevant features,
making feature scaling and selection essential for its
success [42-44].

2.5.7. Classification Metrics

The classification metrics selected for this study are
due to the study’s objective and the nature of the dataset.
Classification metrics are essential for ML model
evaluation when dealing with classification tasks. The
confusion matrix was employed as an evaluation metric for
the ML models. A confusion matrix for a binary
classification problem follows the structure of True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN) [45]. Several key measurements can
be found through the confusion matrix, such as Accuracy
(ACC), Balance (BA), sensitivity (also known as recall or
True Positive Rate-TPR), specificity (true negative rate or
selectivity), precision (Positive Predicted Value-PPV),
Negative Predicted Value (NPV), and Fl-score. Another
classification metric is the Receiver Operating
Characteristic curve (ROC curve), also known as the Area
Under the Curve (AUC), which is a graphical
representation used for binary classification models [46,
47]. The formulas for the classification metrics are defined
below:

Accuracy (ACC):
ACC = TP+ TN
" TP+TN+FP+FN
Balanced Accuracy (BA):

TPR + TNR
A=——
2
Sensitivity(Recall/True Positive Rate-TPR):
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TP

TPR = TP ¥ FN
Specificity (Selectivity/ True Negative Rate-TNR):

TN

TNR =N T FpP
Precision (Positive Predicted Value-PPV):

TP
TP + FP

Negative Predicted Value (NPV):

PPV =

NPV = TN TN

F1-Score:

. PPV X TPR
PPV +TPR

Subsequently, the AUC curve was used to compare the
performance of the model graphically.

3. RESULTS

1=

3.1. Data Statistics

In this study, information and background
characteristics for children under five (0-59 months) are
displayed in Table 1. It shows that the malaria status of
children under five varies significantly across all the
background characteristics. Out of 10,655 under-five
children in the sample, 2,852 firstborn children tested
positive for malaria, more than secondborn and upward;
this means that the number of firstborn children testing

positive for malaria is more than the other birth group
order. Similarly, the anaemia level of a child under five is
also a significant factor affecting malaria status. More
under-five children who tested positive for malaria had a
moderate anaemia level (2,238) compared to those with a
mild anaemia level (868), those who were not anaemic
(700), or those with a severe anaemia level (273). The
mother’s educational status is also a significant factor
affecting the malaria status. Under-five children born to a
mother with no education tested positive for malaria more
than those born to a mother with secondary (738), primary
(559), or higher education (136). Under-five children who
tested positive for malaria are found more in rural areas
(3,286) compared to urban areas (790). This indicates that
the area of residence significantly influences malaria
status. Variables like mother’s language, wealth index,
mosquito bed net for sleeping, type of bed nets, main floor
material, type of cooking stove, main wall material,
availability of transportation, main roof material, type of
toilet facility, household items, source of drinking water,
availability of energy source, and type of cooking fuel are
significant factors affecting malaria status.

3.2. Model Performance

The primary goal of this analysis was to compare these
six classified ML models’ (SLR, DT, RF, SVM, NB, and
KNN) ability to predict the correct class and identify the
strengths and weaknesses of each approach. The models
were trained and tested using the 70% - 30% split. Each
value in the Tables 2 and 3 confusion matrix contributes
to the calculation of performance metrics, including
accuracy, precision, sensitivity (recall), specificity, and
others, which are essential for evaluating classification
models.

Table 1. Background characteristics and descriptive statistics of children under five (0-59 months) in the

survey.
Malaria Rapid Diagnostic Test (RDT) Status
Variables (Categories)
Positive Negative Total P-value
Gender 0.0731
Male 2,139 3,331 6,576
Female 1,940 3,245 4,079
Birth order <.0001
1% Order 2,852 4,306 7,158
2™ Order 1,047 1,899 2,946
3" + Order 180 371 551
Anaemia level <.0001
Mild 868 1,910 2,778
Moderate 2,238 1,847 4,085
Not anemic 700 2,747 3,447
Severe 273 72 345
Mother’s language <.0001
English 51 136 187
Hausa 1,624 1,689 3,313
Igho 317 972 1,289
Other 1,793 3,071 4,864
Yoruba 294 708 1,002
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(Table 1) contd.....
Malaria Rapid Diagnostic Test (RDT) Status
Variables (Categories)
Positive Negative Total P-value
Mother’s educational level <.0001
Higher 136 806 942
No Education 2,646 2,791 5,437
Primary 559 788 1,347
Secondary 738 2,191 2,929
Wealth index <.0001
Middle 889 1,372 2,261
Poorer 1,068 1,034 2,102
Poorest 1,182 1,003 2,185
Richer 659 1,520 2,179
Richest 281 1,647 1,928
Mosquito bed net for sleeping <.0001
Yes 2,650 3,998 6,648
No 1,429 2,578 4,007
Type of bed nets <.0001
No Bed Net 2,340 4,042 6,382
Treated Bed Net 1,695 2,455 4,150
Untreated Bed Net 44 79 123
Residence <.0001
Urban 790 2,310 3,100
Rural 3,286 4,266 7,555
Region <.0001
North Central 639 1,435 2,074
North East 824 1,215 2,039
North West 1,544 1,375 2,919
South East 295 850 1,145
South South 469 969 1,438
South West 308 732 1,040
Main floor material <.0001
Improved 1,793 4,309 6,102
Unimproved 2,286 2,267 4,553
Main wall material <.0001
Improved 1,880 4,566 6,446
Unimproved 2,199 2,010 4,209
Main roof material <.0001
Improved 3,258 5,652 8,910
Unimproved 821 924 1,745
Household items <.0001
Television 421 619 1,040
Radio 719 1,426 2,145
Bed 1,012 2,114 3,126
Other 1,439 2,905 4,344
Availability of transportation <.0001
Car/truck 174 704 878
Motorcycle/scooter 1,201 2,072 3,273
Other 873 5,631 6,504
Availability of energy source <.0001
Electricity 887 2,005 2,892
Generator 476 1,524 2,000
Other 1,310 4,453 5,763
Source of drinking water <.0001
Improved 2,667 5,279 7,946
Unimproved 1,412 1,296 2,709
Type of toilet facility <.0001
Improved 1,884 4,155 6,039
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Table 1) contd.....
Malaria Rapid Diagnostic Test (RDT) Status
Variables (Categories)
Positive Negative Total P-value
Unimproved 2,195 2,421 4,616
Type of cooking fuel <.0001
Clean Fuel 312 1,640 1,952
Liquid Fuel 172 473 645
Solid Fuel 3,595 4,463 8,058
Type of cooking stove <.0001
Clean Fuel Stove 312 1,640 1,952
Liquid Fuel Stove 146 412 558
Solid Fuel Stove 3,621 4,524 8,145
Table 2. The confusion matrix for the six models under the study.
ACTUAL CLASS PREDICTION CLASS
- Positive Negative
SLR Positive 863 576
Negative 352 1405
Positive Negative
DT Positive 711 656
Negative 300 1529
Positive Negative
RF Positive 700 429
Negative 204 1636
Positive Negative
SVM Positive 711 509
Negative 318 1658
Positive Negative
NB Positive 600 669
Negative 450 1477
Positive Negative
KNN Positive 460 630
Negative 506 1600
Table 3. Performance evaluation of the selected ML models for malaria status in under-five children.
SLR DT RF SVM NB KNN
Accuracy 0.71 0.70 0.79 0.74 0.65 0.65
Balance Accuracy 0.70 0.68 0.76 0.71 0.62 0.59
Precision 0.71 0.70 0.77 0.69 0.57 0.48
Sensitivity 0.60 0.52 0.62 0.58 0.47 0.42
Specificity 0.80 0.84 0.89 0.84 0.77 0.76
Negative Predictive Value 0.71 0.70 0.79 0.77 0.69 0.72
F1-Score 0.65 0.60 0.69 0.63 0.52 0.45
AUC 0.73 0.72 0.80 0.80 0.69 0.70

Table 2 indicates that SLR achieved a high True
Negative (TN) count of 1405, indicating strong
performance in identifying negative cases. However, the
False Negative (FN) count of 576 is relatively high,
indicating that the model struggles to identify positive
cases. DT received a higher True Negative (TN) count of
1529 and a lower False Positive (FP) count of 300 than
SLR; however, the False Negative (FN) count of 656 is
high, suggesting that it misses many positive cases. RF

received the lowest False Positive (FP) count of 204 and
the highest True Negative (TN) count of 1636,
demonstrating excellent performance in predicting
negatives. The False Negative (FN) count of 429 of the RF
is moderate-better than most other models but not ideal.
SVM demonstrated a high True Negative (TN) count of
1658 and a relatively low False Positive (FP) count of 318,
along with a False Negative (FN) count of 509. This
performance is moderate, indicating that it misses some
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positive cases. In the NB, the TN (1477) is reasonable,
showing fair performance for negatives. However, it also
demonstrated a high FN (669) and FP (450), indicating
poor performance in both identifying positives. In the
KNN, the TN (1600) is comparable to other models,
indicating decent performance in identifying negatives.
However, the FN (630) and FP (506) are high, reflecting
poor sensitivity and precision.

This indicates that RF performs best with the lowest
number of false negatives and false positives, making it
least likely to misdiagnose malaria in either direction.
Using a model like RF could improve diagnostic accuracy,
minimizing both undertreatment (FN) and overtreatment
(FP). Such an approach is critical in reducing both missed
treatments and unnecessary medications, highlighting the
importance of evaluating predictive models not just on
accuracy but on their false negative and false positive
rates, especially in high-stakes health settings.

From Table 3 and Fig. (1), the RF algorithm
outperformed all the other models in most evaluation
metrics, achieving the highest accuracy (79%), balanced
accuracy (76%), precision (77%), sensitivity (62%), and
F1-Score (69%), along with the highest Area Under the
Curve (AUC = 80%). This indicates that it is effective at
handling both false positives and false negatives, with a
sensitivity score of 62%, meaning it can fairly detect
positive malaria cases. In Fig. (1), the green bar for the RF
algorithm stands out in all the performance metrics. It was
followed by SVM, which also performed well across
several metrics and stood as the second-best model
overall. SVM exhibited moderate performance with an
accuracy of 74%, precision of 69% tied with RF (AUC =
80%), and a high specificity (84%), indicating effectiveness

Performance Metrics by Model
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Fig. (1). Performance metrics of the selected ML models.
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in correctly identifying non-cases. SLR also performed well
with an accuracy of 71%, a precision of 71%, and an F1-
Score of 65%, showing that it performs reasonably well at
detecting both positive and negative cases. DT, while
showing slightly higher specificity (84%) than SLR,
recorded a significantly lower sensitivity (52%), meaning it
misses almost half of the true malaria cases. K-Nearest
Neighbors (KNN) and Naive Bayes (NB) ranked the lowest
across several metrics, with KNN achieving an accuracy of
approximately 65% and NB trailing behind with the lowest
precision (48%) and sensitivity (42%). The poor sensitivity
of both models indicates a serious limitation in their ability
to identify actual malaria cases, making them unreliable in
predicting the malaria status in children under five.
Overall, RF emerged as the most reliable and effective
model, while KNN and NB were less effective in various
performance aspects in predicting the malaria status in
children under five.

3.3. Variable Importance

The RF algorithm was used to identify the most
important variables associated with malaria status in
children under five in the dataset. Fig. (2) shows the
variable importance measured based on the RF algorithm.
The results indicate in order the most important variables
as level of anaemia, birth order, age in months, mother's
language and educational level, wealth index, mosquito
bed net for sleeping, type of mosquito bed net, number of
bed nets in a household, residence, region, source of
drinking water, main wall material, main roof material,
type of toilet facility, type of cooking fuel, type of cooking
stove, and households that may use wood, gas and other

sources of energy.
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Fig. (2). Variable importance measures from the RF algorithm.
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4. DISCUSSION

This study demonstrates the application of machine
learning techniques to forecast malaria status in children
under five (0-59 months) in Nigeria. It is among the few
studies that implemented ML algorithms to predict the
malaria status in children under five using NDHS or NMIS
data, making this work a notable contribution to the
intersection of the public health industry. The results show
that ML algorithms work better than traditional statistical
methods at finding malaria cases, highlighting their
increasing usefulness in medical diagnosis [48]. The
findings are aligned with previous studies that have shown
that ML algorithms can be used to predict the malaria
status in children under five with higher accuracy [9, 16,
25, 26].

The RF algorithm showed the best overall performance
compared to all the models tested, reaching the highest
accuracy (79%), balanced accuracy (76%), precision
(77%), specificity (89%), and a strong F1 score (69%). It
also achieved the highest Area Under the Curve (AUC =
80%) alongside SVM, which demonstrates its ability to
balance precision and sensitivity. This makes RF well-
suited for tasks requiring consistent high performance
across multiple metrics. Based on the AUC measures, all
models in the study demonstrated decent performance.
Furthermore, SVM was the second-best performing model,
particularly with the second-highest Area Under the Curve
(AUC) value of 80%, indicating strong discriminatory
power. While SVM prioritizes recall and sensitivity,
making it suitable for identifying positive cases in critical
applications, it does so at the expense of precision [48-52].

performing slightly better in terms of sensitivity (60%) and
balanced accuracy (70%). However, both models fall short
of RF and SVM, especially in handling complex data
patterns. NB has low sensitivity (47%) and precision
(57%), probably because it assumes that features are
independent, while KNN also exhibited low sensitivity
(42%) and Fl-score (45%), which limits its ability to
handle complex data or incorrect settings [53, 54].

RF achieved the highest true negative rate and the
lowest false positive rate, which indicates strong
specificity and improved sensitivity in detecting malaria
cases. In comparison, models like Naive Bayes (NB) and K-
Nearest Neighbours (KNN) had high rates of missing
actual malaria cases and incorrectly identifying non-cases,
which means they are not very reliable for detecting
malaria. Survey Logistic Regression (SLR) and Decision
Tree (DT) showed moderate specificity but struggled with
high false negative rates, posing risks for undiagnosed
malaria. RF emerged as the most promising model for
minimizing misdiagnosis in children under five.

Overall, RF emerged as the top performer compared to
the other ML algorithms in predicting malaria status in
children under five, based on all of the performance
metrics. However, SVM and SLR did perform moderately
well in some of the performance metrics, meaning that
they may also be effective in predicting the malaria status
in children under five. The importance of evaluating the
multiple models is crucial since the performance of these
models varies depending on the type of problem being
addressed and the type of dataset, due to which model
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performance is recommended to be performed.
Additionally, the study also had some limitations based on
the usage of the survey data, where the sampling weights
may not have been fully integrated into all machine
learning models, potentially introducing bias in the
estimates. Moreover, findings may not generalize beyond
Nigeria or similar low- and middle-income settings.
Another limitation is that the data collection relied on self-
reported information and field-collected data—such as the
use of bed nets and details about households—which can
lead to possible inaccuracies due to mistakes in reporting
because of memory issues, or measurement mistakes,
potentially affecting the quality of the data and impacting
how well the model works.

CONCLUSION

The study aimed to identify the most effective and
robust classification machine learning algorithms for
predicting malaria status in children under five (0-59
months) in Nigeria. The findings revealed that
classification machine learning algorithms are able to
accurately predict malaria status in children under five.
RF and SVM stand out as the top-performing models, with
RF offering a balanced and reliable choice and SVM being
preferable when recall is prioritized. SLR and DT show
potential but may require optimization to compete with
the leading models. Meanwhile, NB and KNN face
significant performance gaps, making them less suitable
for this dataset without substantial improvements. Looking
ahead, future direction for work should focus on
investigating techniques for reducing the dimensionality of
data, model optimization, class weight adjustments, and
ensemble learning. Future research should explore
incorporating environmental and temporal data and
evaluate model integration into real-time decision support
systems for targeted malaria intervention. This can be
explored using longitudinal analysis to track the trend of
malaria status in children under five years of age.
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