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Abstract:
Background: Malaria remains a major cause of  illness and death among children under five in Nigeria,  despite
efforts to control transmission. Accurate and reliable prediction of malaria outbreaks is crucial for health authorities
to take timely measures. This study aims to identify the most robust machine learning classification algorithms for
predicting the status of malaria in children under five (0-59 months).

Methods: The 2021 Nigeria Malaria Indicator Survey (NMIS) included 10,655 children under five who were tested
for  malaria  using  the  Rapid  Diagnostic  Test  (RDT).  Various  machine  learning  models  were  explored,  including
Decision Trees, K-Nearest Neighbor, Naïve Bayes, Random Forest, Support Vector Machines, and Survey Logistic
Regression, and their performance was evaluated through metrics such as accuracy, AUC, balanced accuracy, F1-
Score, negative predictive value, precision, sensitivity, and specificity.

Results:  Random Forest  (RF)  is  the  most  robust  and  balanced  classification  model  due  to  its  superior  accuracy
(79%),  precision  (77%),  recall  (62%),  F1-score  (69%),  and  AUC  (80%).  Support  Vector  Machine  (SVM)  also
demonstrated strong performance, particularly in accuracy (74%) and AUC (80%). Survey Logistic Regression (SLR)
and Decision Tree (DT) offered moderate results but fell short compared to RF and SVM, indicating the need for
further optimization. Naive Bayes (NB) and K-Nearest Neighbors (KNN) had limitations, making them less reliable for
this task.

Conclusion:  In  conclusion,  the  study  reveals  that  RF and SVM are  the  best  classification  models  for  predicting
malaria status in children under five years old. RF is reliable and balanced, while SVM is preferred for recall. SLR
and DT show potential but require optimization. NB and KNN have significant performance gaps, making them less
suitable. These findings will help policymakers and malaria intervention programs address key factors, enabling more
targeted public health interventions to reduce the malaria burden on young children and improve the well-being of
vulnerable populations in Nigeria.
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Nearest neighbors.
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1. INTRODUCTION
Malaria is a potentially fatal epidemic disease that is

spread  through  parasites  that  are  carried  by  mosquito

bites.  It  is  prevalent  in  many  tropical  and  subtropical
developing countries and continues to pose a major health
challenge  globally.  The  World  Health  Organization  lists
the disease as the sixth most common cause of mortality in
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underdeveloped nations,  with sub-Saharan Africa having
the  highest  rate  of  severity.  As  of  2021,  there  were  247
million  reported  malaria  cases,  leading  to  over  619,000
deaths,  with  an  overwhelming  95%  of  these  fatalities
occurring  in  sub-Saharan  Africa.  The  most  vulnerable
groups are pregnant women and children under five years
old,  who represent more than 80% of all  malaria-related
deaths [1].

Nigeria,  with  a  population  exceeding  230  million,  is
one of the countries in the sub-Saharan Africa region that
reports the highest rate of malaria cases [2]. Historically,
Nigeria  has  experienced  widespread  malaria  for
generations,  leading to various approaches to combat it.
The 20th century observed an increase in awareness of the
broad  prevalence  of  malaria,  especially  after
independence in 1960, when health systems were still in
the early stages of development.

During  the  period  of  the  1980s-1990s,  malaria  cases
increased dramatically as a result of a number of issues,
including  a  deficient  healthcare  system,  rising  pesticide
resistance,  and  limited  availability  of  efficient  therapies
like  chloroquine.  During  the  early  2000s,  there  was  a
notable increase in efforts to control malaria, particularly
with the introduction of  Insecticide-Treated Nets (ITNs),
indoor  residual  spraying,  and  Artemisinin-based
Combination  Therapies  (ACTs).  However,  Nigeria
experienced  the  highest  rates  of  malaria  in  the  early
2000s,  mostly  as  a  result  of  growing  resistance  to
antimalarial  drugs  like  chloroquine.  The  World  Health
Organization  (WHO)  determined  that  malaria  was  the
main cause of death in Nigeria during this time. In 2010,
Nigeria continued to face a severe malaria epidemic that
primarily affected children under five years of age, making
it one of its biggest issues [1]. Nigeria had a large share of
the malaria epidemic worldwide at this time, with a high
number  of  cases  and  fatalities  among  this  susceptible
group. Increased efforts to prevent malaria have resulted
in a little improvement in the situation. Seasonal peaks in
malaria transmission and the return of cases, particularly
during rainy seasons, continue to affect children under the
age of five [3].

Nigeria  alone  accounts  for  about  26.8%  of  global
malaria deaths, reflecting the heavy burden of the disease
in  the  country.  Over  38%  of  malaria  deaths  among
children under five occur in Nigeria, translating to more
than  95,000  fatalities  annually  in  this  age  group.  This
situation represents a significant public health challenge
that must be addressed, as the lives of these children are
invaluable.  Additionally,  children  under  five  are
particularly  vulnerable  to  malaria  due  to  their
underdeveloped immune systems [1, 3, 4]. There are cases
of  misdiagnosis  resulting  in  incorrect  diagnostic
determinations.  These  cases  can  lead  to  false-negative
predictions, which may lead to unnecessary administration
of antibiotics and drugs, and in uncertain circumstances,
severe malaria may advance. False positive predictions in
incorrect  diagnoses  prompt  the  administration  of
antimalarial  medications  and  drugs,  which  may  induce
side effects including lethargy, abdominal pain, diarrhoea,

vomiting,  and  serious  consequences  [5].  The  healthcare
industry  and  medical  professionals  require  robust  and
reliable  predictive  systems  to  address  the  persistent
challenge of malaria misdiagnosis in children under five.
Given the high stakes associated with false positives and
false  negatives,  especially  in  vulnerable  paediatric
populations, integrating accurate, data-driven tools, such
as  machine  learning  models,  has  become  essential  to
improve diagnostic precision and patient outcomes [6, 7].

Machine learning models (which can be supervised or
unsupervised),  also  referred  to  as  “ML”  models,  are
methods for creating algorithms that learn from historical
data to forecast future data [5]. Compared to traditional or
classical  regression  models,  Machine  Learning  (ML)
models  have  demonstrated  superior  predictive  accuracy
and are more adept at handling a large number of possible
predictors  [8].  Traditional  statistical  models  often fail  to
capture  complex,  nonlinear  patterns  in  health  data.  ML
models  can  offer  improved  predictive  performance  and
flexibility,  making  them  suitable  for  early  malaria  risk
identification. ML has led to significant improvements in
every aspect of the health system, from preventive care to
post-treatment care, as a result of its implementation. For
instance,  compared  to  conventional  methods,  ML  can
diagnose diseases earlier. In healthcare, the application of
ML models has emerged as a reliable tool that offers new
opportunities  for  predicting  the  status  of  malaria  in
children under five. The purpose of this study is to identify
the most robust machine learning classification algorithms
for predicting malaria status in children under five based
on  the  NMIS  data,  which  includes  individual
socioeconomic  and  demographic  characteristics.  These
models  can  analyze  complex  patterns  across  multiple
variables, such as age, anaemia level, use of bed nets, and
geographic location, that traditional methods may not fully
capture [7, 9]. Integrating ML algorithms into NMIS data
will  offer  insight  into  the  malaria  diagnostic  process,
especially  for  high-risk  groups  like  children  aged  6–59
months,  thereby  helping  Nigeria  significantly  enhance
diagnostic  accuracy  [10].  This,  in  turn,  reduces
misdiagnosis-related  risks,  improves  patient  outcomes,
and supports more efficient use of healthcare resources.
Furthermore,  their  scalability  allows  integration  into
digital  health  platforms  for  real-time  decision-making,
especially  in  resource-limited  settings.  This  process
supports  clinical  care  and  strengthens  public  health
planning  by  identifying  high-risk  populations  and
informing  targeted  interventions.  Thanks  to  the
predictions made by the best-classified machine learning
model,  Nigeria's government,  medical professionals,  and
hospitals  would  be  better  equipped  to  fight  the  malaria
outbreak [7, 11-13].

2. MATERIALS AND METHODS

2.1. Data Source
The data included in this research originates from the

Nigeria Malaria Indicator Survey (NMIS), a cross-sectional
survey executed in 2021 aimed at estimating demographic
and health indicators for malaria in the country. This study
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employed a two-stage stratified cluster design comprising
373 rural and 195 urban clusters in the initial stage. In the
second phase, 14,185 homes were designated as sampling
units,  comprising 25 households  from each metropolitan
region  and  25  households  from  each  rural  area.  The
study's  target  demographics  comprised  moms  from
randomly selected families aged 15-49 and children from
randomly selected homes aged 6-59 months. The sample
size of this study was 10,655 children under five years old
who  were  tested  for  malaria  using  the  Rapid  Diagnostic
Test  (RDT).  The  results  from  the  tests  were  examined
using a binary response variable, which indicates whether
a  child  under  five  has  tested  positive  or  negative  for
malaria.

2.2. Ethical Considerations
Ethical approval was not required since the NMIS data

is a secondary dataset. The NMIS data is accessible in the
public domain of the DHS website. No respondent-linked
confidential information is present in the data.

2.3. Study Variables
The response variables in this study are children under

five years old (6 to 59 months). Initially, the variables were
tested for malaria using the Rapid Diagnostic Test (RDT),
which is a binary variable. The explanatory or independent
variables used in the study include age, gender, mother’s
language, number of women in the household, number of
children  under  five,  household  members,  birth  order
number,  region,  residence,  hemoglobin  level,  anaemia
level,  source  of  drinking  water,  type  of  toilet  facility,
children  slept  under  a  bed  net,  type  of  mosquito  bed
net(s), mosquito bed net for sleeping, and number of bed
nets, household items, mother’s educational level, number
of rooms used for sleeping, main floor material, main roof
material, main wall material, availability of transportation,
type  of  cookstove,  type  of  cooking  fuel,  availability  of
energy source, and wealth index. Previous and numerous
studies suggested the selection of these variables [9, 10,
14-17].

2.4. Data Preprocessing
Data  preprocessing  is  a  crucial  step  to  ensure  the

accuracy,  reliability,  and  usability  of  the  dataset  before
applying  machine  learning  models  [18,  19].  This
preprocessing  ensured  that  the  dataset  was  structured,
clean, and balanced, enhancing the robustness of the ML
classification  models.  Data  preprocessing  was  done  via
STATA  V.17.0  and  SAS  9.4.  First,  variables  such  as
country code, phase, and ultimate area unit were deleted
from the  dataset  with  50% or  more  missing  values  [20].
Categorical variables—such as region, residence, mother’s
language,  and  type  of  mosquito  bed  net—were  encoded
using  one-hot  or  label  encoding  methods  to  make  them
suitable  for  machine  learning  algorithms.  Continuous
variables like hemoglobin level and number of household
members  were  standardized  or  normalized  where
appropriate  to  ensure  uniformity  in  scale  [21].
Additionally,  the  issue  of  having  too  few  positive  or
negative  malaria  cases  was  handled  using  resampling

methods  such  as  the  Synthetic  Minority  Over-sampling
Technique (SMOTE), which is an effective way to enhance
classification  accuracy  in  uneven  health  data  [14,  15,
22-24].

2.5. Machine Learning Models
The  purpose  of  this  study  was  to  find  the  best-

classified  machine  learning  model  that  can  accurately
predict  malaria  status  in  children  under  five.  The  final
dataset  was  split  into  training and testing subsets  using
stratified sampling to maintain the class distribution. The
data  was  split  into  two  uneven  parts:  one  larger,  which
contained 70% of the data for training, and one smaller,
which  contained  30%  of  the  data  for  testing.
Subsequently, a 10-fold Cross-Validation (CV) was used to
evaluate  and  compare  the  classification  performance  of
different  machine  learning  models  in  predicting  malaria
status  among  children  under  five.  Reviews  of  related
studies on predicting malaria status among children under
five contributed to the selection of the six ML models, and
the  quality  and  type  of  the  dataset  used  were  evaluated
during the modeling process [9, 16, 25, 26]. The selected
classification  machine  learning  models  include  Survey
Logistic  Regression,  Decision  Trees,  Random  Forest,
Support  Vector  Machines,  Naïve  Bayes,  and  K-Nearest
Neighbor. The evaluation or performance metrics used for
testing  purposes  include  accuracy,  balanced  accuracy,
sensitivity, specificity, precision, negative predictive value,
F1-Score, and the Area Under the ROC Curve (AUC). The
software used for analyses was R (version 9.1.0).

2.5.1. Survey Logistic Regression
Survey Logistic Regression (SLR) is an extension of a

logistic  regression  model  intended  for  binary  or  multi-
class classification. In a survey setting, changes are made
to  include  survey  design  features  like  stratification,
clustering, and weighting to ensure that the results truly
represent  the  target  population  [27].  These  adjustments
enhance the suitability of the survey data and ensure that
the  results  accurately  reflect  population-level  estimates.
Due  to  the  nature  of  the  NMIS  data,  which  is  a  cross-
sectional  survey  conducted  in  2021,  the  Survey  Logistic
Regression (SLR) was selected as a suitable classification
model.  Weighted  loss  functions  were  used  in  SLR  to
include  sampling  weights,  making  sure  the  predictions
represent the whole population instead of just the sample
[28-30].

SLR  is  used  for  a  binary  response  variable,  where  it
can be an occurring event  (positive,  which indicates  the
presence of malaria) or a non-occurring event (negative,
which  indicates  the  absence  of  malaria)  [31].  Since  the
survey  logistic  regression  equation  incorporates  the
survey  design  features  in  the  model,  the  dichotomous
dependent  variable  was  defined  as  Yhij,  h=1,  2,  …,  H;
i=1, 2, …, nh; j=1, 2, …,  mhi, and xhij represneted the row
vector of the explanatory variable for the jth unit in the ith
cluster within the hth stratum. The probability of an event
occuring, πhij=P(Yhij=1), was defined as the probability of
having malaria.
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The formula of survey logistic regression is defined as
follows:

Where  xhij  is  a  covariate  matrix,  βd  is  a  vector  of
unknown parameters and is the expected proportion of the
category.  The  Pseudo-Maximum  Likelihood  Estimation
(PMLE) was applied for unknown parameters of the model
and to incorporate the survey design features in the model
for unknown parameters [32, 33].

2.5.2. Decision Trees
Decision  Trees  (DT)  is  a  well-known  supervised

machine  learning  method  frequently  utilized  for  classi-
fication  and  regression  applications.  It  resembles  a
flowchart that adopts a tree structure, making it highly or
easily  interpretable  and  flexible.  Since  the  decision  tree
represents  a  model  of  decisions  in  a  tree  structure,  it
consists of three types of nodes: the leaf nodes, the root
node,  and  the  internal  nodes,  which  are  commonly
referred to as decision nodes. Each of the three nodes has
its attributes, where the internal node represents a test on
an attribute, each branch indicates the conclusion of the
test,  and each leaf node provides a class label  or output
value. DT are known to be non-parametric; this means that
they  make  no  distributional  assumption  about  the
underlying data. They are highly versatile and capable of
handling categorical and numerical data [34-36].

2.5.3. Random Forest
Random  Forest  (RA)  is  among  the  most  popular

classification  models  in  machine  learning.  This  versatile
ensemble  algorithm  is  widely  used  to  handle  regression
and  classification  data.  It  functions  by  creating  and
combining  several  decision  trees  derived  from  various
bootstrap  samples  of  the  dataset.  This  process  helps  to
enhance  predictive  accuracy  and  reduce  the  risk  of
overfitting. Employing this process allows the creation of a
collection  of  uncorrelated  trees  (randomization  tech-
niques), each of which contributes to the final prediction
to  increase  robustness  and  control  overfitting  [37,  38].
This procedure ensures that there is diversity among the
multiple decision trees. One of the major key features of
the  random  forest  is  that  it  is  able  to  deal  with  high-
dimensional  datasets  and  handle  missing  data  with
minimal preprocessing. Another notable strength of RF is
its capability to estimate feature importance. RF can show
which features are most important by looking at how much
they reduce impurity (like the Gini index or entropy) or by
checking  how  changing  their  values  affects  the  model's
accuracy [35, 39].

2.5.4. Support Vector Machines
Support  Vector  Machines  (SVM)  are  non-parametric

supervised  machine  learning  algorithms  used  for
classification,  regression,  and  outlier  detection.  SVM
handles high-dimensional  data and focuses on structural
risk minimization. Its core concept involves identifying the

optimal  hyperplane  for  separable  data  and  uses  kernel
tricks for non-linear data. By using kernel functions, SVM
can  map  data  into  higher-dimensional  spaces,  making  it
easier  to  separate  malaria-positive  and  malaria-negative
cases [40].

2.5.5. Naïve Bayes
Naïve  Bayes  (NB)  offers  a  straightforward,  probabi-

listic  approach  to  classification,  often  effective  for  high-
dimensional data. Although the independence assumption
between  predictors  may  not  fully  apply  here,  NB  could
serve as a baseline model, particularly useful when many
predictor variables are approximately independent [41].

2.5.6. K-Nearest Neighbors
K-Nearest Neighbors (KNN) is a non-parametric, lazy

learning algorithm used for classification and regression
tasks. It predicts data point labels by analyzing the labels
of  its  k-nearest  neighbors  in  the  feature  space.  KNN  is
effective  for  smaller  datasets  and  can  adapt  to  complex
decision boundaries. However, it is computationally inten-
sive  for  large  datasets.  Proper  selection  of  k-nearest
neighbors is crucial for optimal performance. Additionally,
the algorithm is sensitive to noisy and irrelevant features,
making  feature  scaling  and  selection  essential  for  its
success  [42-44].

2.5.7. Classification Metrics
The  classification  metrics  selected  for  this  study  are

due to the study’s objective and the nature of the dataset.
Classification  metrics  are  essential  for  ML  model
evaluation  when  dealing  with  classification  tasks.  The
confusion matrix was employed as an evaluation metric for
the  ML  models.  A  confusion  matrix  for  a  binary
classification  problem  follows  the  structure  of  True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN) [45]. Several key measurements can
be found through the confusion matrix, such as Accuracy
(ACC),  Balance (BA),  sensitivity  (also  known as  recall  or
True Positive Rate–TPR), specificity (true negative rate or
selectivity),  precision  (Positive  Predicted  Value–PPV),
Negative  Predicted  Value  (NPV),  and  F1-score.  Another
classification  metric  is  the  Receiver  Operating
Characteristic curve (ROC curve), also known as the Area
Under  the  Curve  (AUC),  which  is  a  graphical
representation used for  binary classification models  [46,
47]. The formulas for the classification metrics are defined
below:

Accuracy (ACC):

Balanced Accuracy (BA):

Sensitivity(Recall/True Positive Rate–TPR):

𝑙𝑜𝑔𝑖𝑡 (
𝜋ℎ𝑖𝑗𝑑

𝜋ℎ𝑖𝑗(𝐷+1)
) = 𝑥ℎ𝑖𝑗𝛽𝑑 

 𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝐵𝐴 =
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2
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Specificity (Selectivity/ True Negative Rate–TNR):

Precision (Positive Predicted Value–PPV):

Negative Predicted Value (NPV):

F1-Score:

Subsequently, the AUC curve was used to compare the
performance of the model graphically.

3. RESULTS

3.1. Data Statistics
In  this  study,  information  and  background

characteristics for children under five (0-59 months) are
displayed in Table 1.  It  shows that  the malaria status of
children  under  five  varies  significantly  across  all  the
background  characteristics.  Out  of  10,655  under-five
children  in  the  sample,  2,852  firstborn  children  tested
positive for malaria,  more than secondborn and upward;
this  means that  the number of  firstborn children testing

positive  for  malaria  is  more  than  the  other  birth  group
order. Similarly, the anaemia level of a child under five is
also  a  significant  factor  affecting  malaria  status.  More
under-five children who tested positive for malaria had a
moderate anaemia level (2,238) compared to those with a
mild  anaemia  level  (868),  those  who  were  not  anaemic
(700),  or  those  with  a  severe  anaemia  level  (273).  The
mother’s  educational  status  is  also  a  significant  factor
affecting the malaria status. Under-five children born to a
mother with no education tested positive for malaria more
than those born to a mother with secondary (738), primary
(559), or higher education (136). Under-five children who
tested positive for malaria are found more in rural areas
(3,286) compared to urban areas (790). This indicates that
the  area  of  residence  significantly  influences  malaria
status.  Variables  like  mother’s  language,  wealth  index,
mosquito bed net for sleeping, type of bed nets, main floor
material,  type  of  cooking  stove,  main  wall  material,
availability of transportation, main roof material,  type of
toilet facility, household items, source of drinking water,
availability of energy source, and type of cooking fuel are
significant factors affecting malaria status.

3.2. Model Performance
The primary goal of this analysis was to compare these

six  classified  ML  models’  (SLR,  DT,  RF,  SVM,  NB,  and
KNN) ability to predict the correct class and identify the
strengths and weaknesses of each approach. The models
were trained and tested using the 70% - 30% split. Each
value in the Tables 2 and 3 confusion matrix contributes
to  the  calculation  of  performance  metrics,  including
accuracy,  precision,  sensitivity  (recall),  specificity,  and
others,  which  are  essential  for  evaluating  classification
models.

Table  1.  Background  characteristics  and  descriptive  statistics  of  children  under  five  (0-59  months)  in  the
survey.

Variables (Categories)
Malaria Rapid Diagnostic Test (RDT) Status

Positive Negative Total P-value

Gender 0.0731
Male 2,139 3,331 6,576

Female 1,940 3,245 4,079
Birth order <.0001

1st Order 2,852 4,306 7,158
2nd Order 1,047 1,899 2,946

3rd + Order 180 371 551
Anaemia level <.0001

Mild 868 1,910 2,778
Moderate 2,238 1,847 4,085

Not anemic 700 2,747 3,447
Severe 273 72 345

Mother’s language <.0001
English 51 136 187
Hausa 1,624 1,689 3,313
Igbo 317 972 1,289

Other 1,793 3,071 4,864
Yoruba 294 708 1,002

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
  

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁

𝐹1 = 2 ×  
𝑃𝑃𝑉 × 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
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Variables (Categories)
Malaria Rapid Diagnostic Test (RDT) Status

Positive Negative Total P-value

Mother’s educational level <.0001
Higher 136 806 942

No Education 2,646 2,791 5,437
Primary 559 788 1,347

Secondary 738 2,191 2,929
Wealth index <.0001

Middle 889 1,372 2,261
Poorer 1,068 1,034 2,102
Poorest 1,182 1,003 2,185
Richer 659 1,520 2,179
Richest 281 1,647 1,928

Mosquito bed net for sleeping <.0001
Yes 2,650 3,998 6,648
No 1,429 2,578 4,007

Type of bed nets <.0001
No Bed Net 2,340 4,042 6,382

Treated Bed Net 1,695 2,455 4,150
Untreated Bed Net 44 79 123

Residence <.0001
Urban 790 2,310 3,100
Rural 3,286 4,266 7,555

Region <.0001
North Central 639 1,435 2,074

North East 824 1,215 2,039
North West 1,544 1,375 2,919
South East 295 850 1,145

South South 469 969 1,438
South West 308 732 1,040

Main floor material <.0001
Improved 1,793 4,309 6,102

Unimproved 2,286 2,267 4,553
Main wall material <.0001

Improved 1,880 4,566 6,446
Unimproved 2,199 2,010 4,209

Main roof material <.0001
Improved 3,258 5,652 8,910

Unimproved 821 924 1,745
Household items <.0001

Television 421 619 1,040
Radio 719 1,426 2,145
Bed 1,012 2,114 3,126

Other 1,439 2,905 4,344
Availability of transportation <.0001

Car/truck 174 704 878
Motorcycle/scooter 1,201 2,072 3,273

Other 873 5,631 6,504
Availability of energy source <.0001

Electricity 887 2,005 2,892
Generator 476 1,524 2,000

Other 1,310 4,453 5,763
Source of drinking water <.0001

Improved 2,667 5,279 7,946
Unimproved 1,412 1,296 2,709

Type of toilet facility <.0001
Improved 1,884 4,155 6,039

(Table 1) contd.....
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Variables (Categories)
Malaria Rapid Diagnostic Test (RDT) Status

Positive Negative Total P-value

Unimproved 2,195 2,421 4,616
Type of cooking fuel <.0001

Clean Fuel 312 1,640 1,952
Liquid Fuel 172 473 645
Solid Fuel 3,595 4,463 8,058

Type of cooking stove <.0001
Clean Fuel Stove 312 1,640 1,952
Liquid Fuel Stove 146 412 558
Solid Fuel Stove 3,621 4,524 8,145

Table 2. The confusion matrix for the six models under the study.

ACTUAL CLASS PREDICTION CLASS

SLR
- Positive Negative

Positive 863 576
Negative 352 1405

DT
Positive Negative

Positive 711 656
Negative 300 1529

RF
Positive Negative

Positive 700 429
Negative 204 1636

SVM
Positive Negative

Positive 711 509
Negative 318 1658

NB
Positive Negative

Positive 600 669
Negative 450 1477

KNN
Positive Negative

Positive 460 630
Negative 506 1600

Table 3. Performance evaluation of the selected ML models for malaria status in under-five children.

SLR DT RF SVM NB KNN

Accuracy 0.71 0.70 0.79 0.74 0.65 0.65
Balance Accuracy 0.70 0.68 0.76 0.71 0.62 0.59

Precision 0.71 0.70 0.77 0.69 0.57 0.48
Sensitivity 0.60 0.52 0.62 0.58 0.47 0.42
Specificity 0.80 0.84 0.89 0.84 0.77 0.76

Negative Predictive Value 0.71 0.70 0.79 0.77 0.69 0.72
F1-Score 0.65 0.60 0.69 0.63 0.52 0.45

AUC 0.73 0.72 0.80 0.80 0.69 0.70

Table  2  indicates  that  SLR  achieved  a  high  True
Negative  (TN)  count  of  1405,  indicating  strong
performance in identifying negative cases.  However,  the
False  Negative  (FN)  count  of  576  is  relatively  high,
indicating  that  the  model  struggles  to  identify  positive
cases. DT received a higher True Negative (TN) count of
1529  and  a  lower  False  Positive  (FP)  count  of  300  than
SLR;  however,  the  False  Negative  (FN)  count  of  656  is
high,  suggesting  that  it  misses  many  positive  cases.  RF

received the lowest False Positive (FP) count of 204 and
the  highest  True  Negative  (TN)  count  of  1636,
demonstrating  excellent  performance  in  predicting
negatives. The False Negative (FN) count of 429 of the RF
is moderate–better than most other models but not ideal.
SVM  demonstrated  a  high  True  Negative  (TN)  count  of
1658 and a relatively low False Positive (FP) count of 318,
along  with  a  False  Negative  (FN)  count  of  509.  This
performance is  moderate,  indicating that  it  misses some

(Table 1) contd.....
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positive  cases.  In  the  NB,  the  TN  (1477)  is  reasonable,
showing fair performance for negatives. However, it also
demonstrated  a  high  FN  (669)  and  FP  (450),  indicating
poor  performance  in  both  identifying  positives.  In  the
KNN,  the  TN  (1600)  is  comparable  to  other  models,
indicating  decent  performance  in  identifying  negatives.
However, the FN (630) and FP (506) are high, reflecting
poor sensitivity and precision.

This  indicates  that  RF performs best  with  the lowest
number  of  false  negatives  and  false  positives,  making  it
least  likely  to  misdiagnose  malaria  in  either  direction.
Using a model like RF could improve diagnostic accuracy,
minimizing both undertreatment (FN) and overtreatment
(FP). Such an approach is critical in reducing both missed
treatments and unnecessary medications, highlighting the
importance  of  evaluating  predictive  models  not  just  on
accuracy  but  on  their  false  negative  and  false  positive
rates,  especially  in  high-stakes  health  settings.

From  Table  3  and  Fig.  (1),  the  RF  algorithm
outperformed  all  the  other  models  in  most  evaluation
metrics,  achieving the highest accuracy (79%),  balanced
accuracy  (76%),  precision  (77%),  sensitivity  (62%),  and
F1-Score  (69%),  along  with  the  highest  Area  Under  the
Curve (AUC = 80%). This indicates that it  is  effective at
handling  both  false  positives  and false  negatives,  with  a
sensitivity  score  of  62%,  meaning  it  can  fairly  detect
positive malaria cases. In Fig. (1), the green bar for the RF
algorithm stands out in all the performance metrics. It was
followed  by  SVM,  which  also  performed  well  across
several  metrics  and  stood  as  the  second-best  model
overall.  SVM  exhibited  moderate  performance  with  an
accuracy of  74%, precision of  69% tied with RF (AUC =
80%), and a high specificity (84%), indicating effectiveness

in correctly identifying non-cases. SLR also performed well
with an accuracy of 71%, a precision of 71%, and an F1-
Score of 65%, showing that it performs reasonably well at
detecting  both  positive  and  negative  cases.  DT,  while
showing  slightly  higher  specificity  (84%)  than  SLR,
recorded a significantly lower sensitivity (52%), meaning it
misses  almost  half  of  the  true  malaria  cases.  K-Nearest
Neighbors (KNN) and Naive Bayes (NB) ranked the lowest
across several metrics, with KNN achieving an accuracy of
approximately 65% and NB trailing behind with the lowest
precision (48%) and sensitivity (42%). The poor sensitivity
of both models indicates a serious limitation in their ability
to identify actual malaria cases, making them unreliable in
predicting  the  malaria  status  in  children  under  five.
Overall,  RF  emerged  as  the  most  reliable  and  effective
model,  while KNN and NB were less effective in various
performance  aspects  in  predicting  the  malaria  status  in
children under five.

3.3. Variable Importance
The  RF  algorithm  was  used  to  identify  the  most

important  variables  associated  with  malaria  status  in
children  under  five  in  the  dataset.  Fig.  (2)  shows  the
variable importance measured based on the RF algorithm.
The results indicate in order the most important variables
as level of anaemia, birth order, age in months, mother's
language  and  educational  level,  wealth  index,  mosquito
bed net for sleeping, type of mosquito bed net, number of
bed  nets  in  a  household,  residence,  region,  source  of
drinking  water,  main  wall  material,  main  roof  material,
type of toilet facility, type of cooking fuel, type of cooking
stove, and households that may use wood, gas and other
sources of energy.

Fig. (1). Performance metrics of the selected ML models.
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Fig. (2). Variable importance measures from the RF algorithm.

4. DISCUSSION
This  study  demonstrates  the  application  of  machine

learning techniques to forecast malaria status in children
under five (0-59 months) in Nigeria.  It  is among the few
studies  that  implemented  ML  algorithms  to  predict  the
malaria status in children under five using NDHS or NMIS
data,  making  this  work  a  notable  contribution  to  the
intersection of the public health industry. The results show
that ML algorithms work better than traditional statistical
methods  at  finding  malaria  cases,  highlighting  their
increasing  usefulness  in  medical  diagnosis  [48].  The
findings are aligned with previous studies that have shown
that  ML  algorithms  can  be  used  to  predict  the  malaria
status in children under five with higher accuracy [9, 16,
25, 26].

The RF algorithm showed the best overall performance
compared to  all  the  models  tested,  reaching  the  highest
accuracy  (79%),  balanced  accuracy  (76%),  precision
(77%), specificity (89%), and a strong F1 score (69%). It
also achieved the highest Area Under the Curve (AUC =
80%)  alongside  SVM,  which  demonstrates  its  ability  to
balance  precision  and  sensitivity.  This  makes  RF  well-
suited  for  tasks  requiring  consistent  high  performance
across multiple metrics. Based on the AUC measures, all
models  in  the  study  demonstrated  decent  performance.
Furthermore, SVM was the second-best performing model,
particularly with the second-highest Area Under the Curve
(AUC)  value  of  80%,  indicating  strong  discriminatory
power.  While  SVM  prioritizes  recall  and  sensitivity,
making it suitable for identifying positive cases in critical
applications, it does so at the expense of precision [48-52].

RF  achieved  the  highest  true  negative  rate  and  the
lowest  false  positive  rate,  which  indicates  strong
specificity  and  improved  sensitivity  in  detecting  malaria
cases. In comparison, models like Naive Bayes (NB) and K-
Nearest  Neighbours  (KNN)  had  high  rates  of  missing
actual malaria cases and incorrectly identifying non-cases,
which  means  they  are  not  very  reliable  for  detecting
malaria.  Survey  Logistic  Regression  (SLR)  and  Decision
Tree (DT) showed moderate specificity but struggled with
high  false  negative  rates,  posing  risks  for  undiagnosed
malaria.  RF  emerged  as  the  most  promising  model  for
minimizing misdiagnosis in children under five.

Overall, RF emerged as the top performer compared to
the  other  ML  algorithms  in  predicting  malaria  status  in
children  under  five,  based  on  all  of  the  performance
metrics. However, SVM and SLR did perform moderately
well  in  some  of  the  performance  metrics,  meaning  that
they may also be effective in predicting the malaria status
in children under five.  The importance of  evaluating the
multiple models is crucial since the performance of these
models  varies  depending  on  the  type  of  problem  being
addressed  and  the  type  of  dataset,  due  to  which  model

SLR  and  DT  deliver  moderate  results,  with  SLR
performing slightly better in terms of sensitivity (60%) and
balanced accuracy (70%). However, both models fall short
of  RF  and  SVM,  especially  in  handling  complex  data
patterns.  NB  has  low  sensitivity  (47%)  and  precision
(57%),  probably  because  it  assumes  that  features  are
independent,  while  KNN  also  exhibited  low  sensitivity
(42%)  and  F1-score  (45%),  which  limits  its  ability  to
handle  complex  data  or  incorrect  settings  [53,  54].
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performance  is  recommended  to  be  performed.
Additionally, the study also had some limitations based on
the usage of the survey data, where the sampling weights
may  not  have  been  fully  integrated  into  all  machine
learning  models,  potentially  introducing  bias  in  the
estimates. Moreover, findings may not generalize beyond
Nigeria  or  similar  low-  and  middle-income  settings.
Another limitation is that the data collection relied on self-
reported information and field-collected data—such as the
use of bed nets and details about households—which can
lead to possible inaccuracies due to mistakes in reporting
because  of  memory  issues,  or  measurement  mistakes,
potentially affecting the quality of the data and impacting
how well the model works.

CONCLUSION
The  study  aimed  to  identify  the  most  effective  and

robust  classification  machine  learning  algorithms  for
predicting  malaria  status  in  children  under  five  (0-59
months)  in  Nigeria.  The  findings  revealed  that
classification  machine  learning  algorithms  are  able  to
accurately  predict  malaria  status  in  children  under  five.
RF and SVM stand out as the top-performing models, with
RF offering a balanced and reliable choice and SVM being
preferable  when  recall  is  prioritized.  SLR  and  DT  show
potential  but  may  require  optimization  to  compete  with
the  leading  models.  Meanwhile,  NB  and  KNN  face
significant  performance gaps,  making them less  suitable
for this dataset without substantial improvements. Looking
ahead,  future  direction  for  work  should  focus  on
investigating techniques for reducing the dimensionality of
data,  model  optimization,  class  weight  adjustments,  and
ensemble  learning.  Future  research  should  explore
incorporating  environmental  and  temporal  data  and
evaluate model integration into real-time decision support
systems  for  targeted  malaria  intervention.  This  can  be
explored using longitudinal analysis to track the trend of
malaria status in children under five years of age.
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