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Abstract:

Introduction: : Despite significant advancements over the previous three decades, under-five mortality is still a
significant public health concern in East Africa. Sustainable Development Goal (SDG) 3.2 calls for a reduction in
under-five mortality to 25 deaths per 1,000 live births by 2030. Recent evaluations show that the area is not on
course to attain the SDG objective, despite considerable declines in Kenya, Rwanda, Tanzania, and Uganda. This
study compares the forecasting performance of Autoregressive Integrated Moving Average (ARIMA), Autoregressive
Frictionally Integrated Moving Average (ARFIMA), and hybrid models for predicting under-five mortality rates
(USMR) in four East African countries and assesses their projected progress toward SDG 3.2.

Methods: Annual USMR data for 1995-2022 were obtained from the World Bank. Differencing was used to attain
stationarity after initial Augmented Dickey-Fuller (ADF) tests revealed non-stationarity in all four nations. ARIMA,
ARFIMA, and hybrid models tailored to each country were fitted and assessed using AIC, BIC, RMSE, MAE, MAPE,
and R’. The Ljung-Box test was used to determine residual independence. The best-performing models were used to
create forecasts for 2023 to 2030.

Results: In every country, ARIMA models performed better than ARFIMA and hybrid models, exhibiting the best
residual diagnostics and the lowest error metrics. Through 2030, U5SMR is expected to continue declining, although
none of the four nations are expected to meet the SDG 3.2 objective.

Discussion: To achieve SDG 3.2 in East Africa, child survival initiatives and healthcare systems must be
strengthened.

Conclusion: In every country, ARIMA models performed better than other models, showing the best residual
diagnostics and the lowest error metrics. Although USMR is expected to continue declining through 2030, none of the
four nations is expected to meet the SDG 3.2 objective.
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1. INTRODUCTION

Sustainable Development Goal (SDG) 3.2, which seeks
to lower under-five mortality to 25 deaths per 1,000 live
births by 2030, places a strong emphasis on reducing
under-five mortality [1]. Due to enduring socioeconomic
disparities, health system constraints, and unequal access
to high-impact child health interventions, East Africa
continues to see slight decreases than the rest of the
world despite advances [2-4].

In 2023, the UN Inter-agency Group for Child
Mortality Estimation (UN IGME) reported a global under-
five mortality rate (USMR) of roughly 37 deaths per 1,000
live births [2, 3]. In sub-Saharan Africa, the USMR
remains about 68 deaths per 1,000 live births, according
to the most recent data [1]. While recent data for Kenya,
Rwanda, Tanzania, and Uganda differ, several national
estimates indicate Uganda's USMR at 39 per 1,000 live
births, which is still significantly higher than the SDG 3.2
target of 25 per 1,000 [5]. These results show that, while
significant reductions have been made throughout the
area, the rate of decline has slowed in the SDG era, with
global yearly reductions falling from approximately 3.7%
in 2000-2015 to 2.2% in 2015-2023 [1, 3].

Time-series approaches, such as the Autoregressive
Integrated Moving Average (ARIMA) model, are commonly
used to model and forecast health indicators because they
successfully capture short-term autocorrelation and linear
temporal structure [6]. For series with long-memory or
slow-decaying correlations, the Autoregressive Fracti-
onally Integrated Moving Average (ARFIMA) model may
provide better performance via fractional differencing.
Hybrid techniques that incorporate ARIMA and ARFIMA
have also received attention for capturing both short- and
long-term memory properties [7, 8]

However, few studies have evaluated ARIMA, ARFIMA,
and hybrid models for forecasting under-five mortality in
East Africa. Understanding the most accurate forecasting
strategy is critical to helping the region's progress
towards SDG 3.2. This study examines and evaluates the
forecasting effectiveness of ARIMA, ARFIMA, and hybrid
ARIMA-ARFIMA models for Kenya, Rwanda, Tanzania, and
Uganda using panel data from 1995 to 2022.

2. METHOD AND MATERIALS

2.1. Data Source

Using annual time-series data from Kenya, Rwanda,
Tanzania, and Uganda, we analysed under-five mortality
rates per 1,000 live births. Statistics from 1995-2022 were
gathered from the World Bank's web-based development
indicators catalogue. This balanced panel of four countries
(with data from 1995-2022) allows for consistent
comparisons between them across time. Data series from
each country were examined using time-series models. To
assess the effectiveness of univariate time series
forecasting on mortality rate trajectories, no further
exogenous factors were added. USMR is defined as the
number of deaths among children under five per 1,000 live
births.
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2.2. Study Variables

This study measures the UFMR, which is the number
of deaths in children under five (U5D) per 1,000 live births
each year. Our goal is to anticipate the rate (dependent
variable). These models are univariate, relying solely on
historical USMR values to predict future values. The
models use time (measured in years) as the independent
variable to capture temporal patterns and trends in the
under-five mortality rate from 1995 to 2022. No other
factors are utilised in these models, aligning with the
focus on mortality rate time-series behaviour.

2.3. Stationarity and Time Series Modelling

Approach

2.3.1. Stationarity

Prior to modelling, the stationarity properties of the
under-five mortality series were evaluated using the
Augmented Dickey-Fuller (ADF) test, which determines if
a time series has a unit root, indicating non-stationarity.
The ADF test relies on the following regression in (Eq. 1):

v
Vi =at+pttyy._, + Z &;Vy._; + &, a)

i=1
where, y, is the time series value, Vy, = y, - V.,
represents first differencing, t is the time trend, y is the
coefficient used to test for a unit root, p is the number of
lagged difference term added to remove autocorrelation,
and €, is a white noise. The hypothesis tested is

H,: the series has a unit root (non-stationary).
H,: the series is stationary.

If the ADF test statistic is more negative than the
critical value, or if the p-value is > 0.05, the null
hypothesis is rejected, showing stationary behaviour. If
not, the series is deemed non-stationary, and differencing
is required to stabilise the mean and variance. Also,
detrending and Box-Cox transformation may be applied.
Stationarity is required for ARIMA and ARFIMA models
because non-stationary data can produce biased para-
meter estimates and incorrect forecasts.

2.3.2. Autoregressive Integrated Moving Average

The ARIMA method delineates the linear trends and
short-term variations in the under-five mortality rate
series for each nation [7]. Stationary time series data or
data that has been rendered stationary through differen-
cing demonstrates robust performance [7, 9, 10]. The
ARIMA model is characterised by three parameters: p,
representing the number of autoregressive (AR) terms; d,
indicating the degree of differencing; and g, denoting the
number of moving average (MA) terms [11, 12]. An ARIMA
model is defined as (Eq. 2):

¢(B)(1 — B)?y, = 8(B)s,, @)

where ¢B and 6B denotes polynomials in the backshift
operator B.
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2.3.3. Autoregressive Fractionally Integrated Moving
Average

The ARFIMA model is employed in mortality data to
identify long-memory characteristics and trends that
ARIMA models may struggle to detect [7, 12]. The extent
of long-range dependence is assessed by measuring the
fractional differencing parameter [12, 13]. This is
beneficial in contexts such as health data, where
autocorrelations in the data progressively decline over
time [14, 15]. The ARFIMA model is characterized by
three parameters: p, representing the number of
autoregressive (AR) terms; df , indicating the degree of
frictional differencing; and ¢, denoting the number of
moving average (MA) terms. An ARFIMA model is defined
as (Eq. 3):

$(B)(1 — B)4fy, = 68(B)v,, A3

with the frictional differencing operator given by the
binomial expansion (Eq. 4):

. - T(k—d;)
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2.3.4. ARIMA-ARFIMA Hybrid Model

The hybrid model improves prediction accuracy by
combining the long-memory attributes of ARFIMA with the
short-memory structure of ARIMA [7]. This study's hybrid
model amalgamates forecasts from the ARIMA and
ARFIMA models, capitalising on the advantages of both
methodologies. Following the classical residual-modelling
strategy (Egs. 5 and 6):

Step 1: Fit ARIMA to the original series, y,

Step 2: Extract residuals:
er =V — j:;fﬂmn_
Step 3: Fit an ARFIMA model to the ARIMA residuals
to capture long-memory structure.

Step 4: Combine forecasts:

j:,:f.‘r'hf'l'd = PARIMA | ZARFIMA 5)
This framework facilitates the integration of ARIMA's

predictive capabilities for short-term trends with

ARFIMA's capacity for long-term dependencies.

2.4. Model Selection and Parameter Optimisation

2.4.1. Model Selection

Model selection in time-series analysis is choosing the
best structure to capture the stochastic patterns found in
a dataset. For ARIMA-type models, this method entails
determining the best autoregressive order (p), differen-
cing order (d), and moving-average order (q) [7]. Selection
is frequently guided by information criteria such as the
Akaike Information Criterion (AIC), corrected AIC (AICc),
and Bayesian Information Criterion (BIC), which discou-
rage excessive parameterisation while rewarding impr-
oved fit [16]. AIC value is given by (Eq. 6):

AIC = 2k — 21In(L), ()

where, k represents the number of parameters and L
represents the likelihood. In contrast to the Akaike
Information Criterion (AIC), the Bayesian Information
Criterion (BIC) imposes a more stringent penalty on model
complexity; lower values signify a superior fit [16, 17]. BIC
value is given by (Eq. 7):

BIC = kIn(n) — 21In{L), (7)

where n represents the quantity of observations. In the
process of model selection, AIC and BIC are calculated to
determine the most suitable parameter combinations [17].
Lower information-criterion values suggest better-suited
models. Automated techniques, such as the auto.arima (in
R software version 3.6.3) algorithm, is frequently used in
time-series modelling nowadays. Auto.arima searches
systematically across a wide range of p, d, and q values,
uses unit-root tests to identify acceptable differencing, and
assesses candidate models using AICc or BIC [16]. It also
checks for stationarity and invertibility restrictions, as
well as seasonal components where applicable. This
automated methodology promotes efficiency and model
parsimony while offering a data-driven foundation for
selecting well-specified ARIMA models [18, 19]. When
selecting ARFIMA models, it's important to choose
fractional differencing parameters that are stationary and
invertible within the range of -0.5 to 0.5 [7]. Hybrid
modelling approaches often begin by selecting the best
ARIMA and ARFIMA models separately before assessing
the value of merging their projections [20].

2.4.2. Parameter Estimation

Maximum likelihood estimation (MLE) is commonly
used to estimate parameters in ARIMA, ARFIMA, and
hybrid models. In ARIMA models, MLE is used to estimate
the autoregressive and moving-average parameters by
maximising the observed series' likelihood under the
assumed model [21]. The differencing order d assures
stationarity, whilst the calculated coefficients must adhere
to theoretical restrictions that ensure the model's
stationarity and invertibility [21].

2.4.3. Model Diagnostics and Validation

For ARFIMA models, MLE also estimates the fractional
differencing parameter, allowing the model to reflect long-
memory features. The parameter estimate technique
ensures that the fractional differencing value is within the
feasible range, which maintains model stability. Hybrid
model parameter estimation normally entails estimating
each component model individually and then establishing
combination weights, which are frequently chosen to
minimise forecasting error metrics such as the Root Mean
Squared Error (RMSE). MLE produces consistent and
efficient parameter estimations across model classes when
the wunderlying assumptions are met. Estimated
parameters must be statistically significant, theoretically
sound, and supported by diagnostic tests [21]. Model
diagnostics are required to ensure that the selected and
estimated model accurately captures the underlying data-
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generation process. Diagnostic evaluation is primarily
concerned with the behaviour of model residuals [22]. A
correctly stated model should produce residuals that look
like white noise, such as uncorrelated, random, and with
constant variance [22]. Residual independence is typically
evaluated using the Ljung-Box Q-test, which tests the null
hypothesis that model residuals exhibit no autocorrelation
[22]. The following provides the test statistic (Eq. 8):

h .
o Pk
k=1

where p, is the sample autocorrelation at lag k, n is the
number of observations, h is the number of lags being
tested, and Q is the Ljung-Box statistic. A non-significant
p-value supports the adequacy of the fitted model [22].
Model adequacy is further assessed using forecast
accuracy metrics, including Mean Absolute Error, Root
Mean Square Error, Mean Absolute Percentage Error, and
R’ to ensure that the model performs reliably in both
fitting past observations and predicting future values [23].
The average magnitude of errors is quantified by the Mean
Absolute Error, or MAE. The Mean Absolute Error
diminishes as model accuracy improves. The optimal
approach for understanding the overall average error is to
utilize the same units as the original data [24]. It is given

3)

by (Eq. 9):
iv .
MAE =EZ[}‘}—?}| )
t=1
The Mean Absolute Percentage Error (MAPE)

simplifies the comprehension of errors by representing
them as percentages. Better forecasting accuracy is
indicated by a lower MAPE [23, 24]. MAPE is given as
follows in (Eq. 10):

100 Z“: ;%
n | T

t=1

MAPE =

(10)

(a) Kenya

Under-5 Mortality Rate

Year

Under-5 Mortality Rate
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Root Mean Square Error (RMSE) penalises large
errors severely because of squaring [24]. Better perfor-
mance is indicated by a lower RMSE [9, 22, 23]. and given
by (Eq. 11):

I.—
1¢
RMSE = %Z(ﬂ —%)? 1)
10] t=1

Contextual judgement is used to determine whether
outlier sensitivity or percentage error is more important
when one metric is inconsistent (such as one model has a
lower MAE but a higher RMSE) [23, 25].

3. RESULTS

3.1. Exploratory Data Analysis

Figure la-d indicate that under-five mortality rates
decreased significantly in all four East African countries
between 1995 and 2022, albeit the amount of reduction
varied by country. Kenya has had a continuous and
constant drop, from more than 110 fatalities per 1,000 live
births in the mid-1990s to around 41 deaths per 1,000 in
2022. Rwanda has shown the most dramatic improvement,
with mortality dropping from more than 220 deaths per
1,000 live births in 1995 to around 38 deaths per 1,000 in
2022, owing primarily to faster increases between 2000
and 2010. Tanzania also shows a smooth and steady
decline, falling from approximately 160 to 42 deaths per
1,000 during the timeframe, while Uganda follows a
similar downward pattern, falling from around 165 to 40
deaths per 1,000. Overall, the four panels show persistent
improvements in child survival across the region; however,
despite these gains, none of the countries have yet met the
SDG 3.2 target of 25 deaths per 1,000 live births,
highlighting the need for further strengthening of child
health measures.

(k) Rwanda

Year
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(c) Tanzania

Under-5 Mortality Rate

0
Year

Under-5 Maoriality Rate

(d) Uganda

ik ]
Year

Fig. (la-d). Trend plot of Under-Five Mortality Rates (UFMR) for Kenya, Rwanda, Tanzania, and Uganda, illustrating the historical

changes in mortality rates from 1995 to 2022.

3.2. Stationarity Test

Initial Augmented Dickey-Fuller (ADF) tests on the raw
under-five mortality series for Kenya, Rwanda, Tanzania,
and Uganda revealed that all four countries exhibited non-
stationary data with p-values greater than 0.05, indicating
the presence of unit roots. As a result, differencing was
applied to each country's series, and a column in the
results table indicates the number of differences needed to
ensure stationarity for each dataset. After differing twice,
the ADF tests were redone, and Table 1 displays the
resulting ADF statistics and p-values for the four
countries. All examples had p-values < 0.005, supporting
the alternative hypothesis and rejecting the unit-root null.
Rwanda and Uganda, for example, with the ADF statistics
of -18.51 (p = 0.0001) and -7.92 (p = 0.0005), respectively,
but Kenya and Tanzania also show high indications of
stationarity. These findings demonstrate that, following
proper differencing, the under-five mortality series from
1995 to 2022 are stationary at the 5% level

3.3. Model Selection

Table 2 summarises the ARIMA model orders chosen
for Kenya, Rwanda, Tanzania, and Uganda, together with
their respective AIC and BIC values. After comparative
examination revealed that ARIMA models were better
suited to the current data than ARFIMA or hybrid
alternatives, the auto.arima method was used to determine
the best specification for each country. Auto.arima runs
through multiple combinations of p, d, and q values, uses
unit-root testing to guide differencing, and selects models
with the lowest information-criterion values. For Kenya,
the technique used ARIMA (0,2,1), which had an AIC of
42.77 and a BIC of 45.29. Rwanda and Uganda both chose
ARIMA (1,2,0) as their best models, demonstrating
relatively simple autoregressive structures after differen-
cing. Tanzania required a more sophisticated

autoregressive component, with ARIMA (4,2,0) providing
the best results (AIC = 32.10; BIC = 38.39). Overall, the
chosen models offer the most statistically efficient and
concise ARIMA specifications for the differenced series,
proving ARIMA's usefulness for modelling and forecasting
under-five mortality in the four nations.

3.4. Model Performance Comparison

Table 3 summarizes the training and testing accuracy
metrics for the selected ARIMA models, which were
trained with 80% of the time-series data and tested with
20%. Across the training set, all four models had
reasonably low MAE, RMSE, and MAPE values, indicating
strong in-sample fitting. Kenya's ARIMA (0,2,1) achieved
reasonable accuracy (MAE = 0.37;, RMSE = 0.46),
whereas Rwanda's ARIMA (2,1,0) generated more training
errors (MAE = 0.79; RMSE = 1.12), indicating greater
variability in its historical pattern. Tanzania's ARIMA
(4,2,0) and Uganda's ARIMA (2,1,0) produced the best in-
sample results, with low MAE and RMSE values (MAE =
0.23-0.24; RMSE = 0.27-0.29) that closely matched the
actual data. In contrast, the test-set (20%) findings show
higher variability in out-of-sample predicting performance.
Kenya and Tanzania exhibit reasonably steady
generalization, with moderate gains in MAE and RMSE
(Kenya MAE = 0.52; Tanzania MAE = 0.59), showing that
their ARIMA models maintained respectable predictive
accuracy after training. However, Rwanda and Uganda
show significant declines in forecast performance,
particularly in MAPE, with Rwanda achieving a Test MAPE
of 746.17 and Uganda 1671.98. These substantial out-of-
sample errors point to increased structural fluctuations or
anomalies in the latter stages of their time series. Overall,
Tanzania's ARIMA (4,2,0) model generalises the best
under the 80/20 split, while Rwanda and Uganda have
worse predictive stability despite good in-sample
performance.
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Table 1. Kenya, Rwanda, Tanzania, and Uganda all have time series for under-five mortality rates that are

stationary at the 5% significance level, according to the results of the stationarity test.

Dlamini et al.

Country ADF Statistic p-value Stationary Differencing
Kenya -3.76 0.0033 Yes 2
Rwanda -18.51 0.0001 Yes 2
Tanzania -5.88 0.001 Yes 2
Uganda -7.92 0.0005 Yes 2

Table 2. Selected ARIMA model orders and corresponding AIC and BIC values for Kenya, Rwanda, Tanzania,

and Uganda.
Country ARIMA (p, d, q) AIC BIC
Kenya 0,2,1) 42.77 45.29
Rwanda (1,2,0) 85.59 88.11
Tanzania (4, 2,0) 32.10 38.39
Uganda (1, 2,0) 22.71 25.26

Table 3. Training and testing accuracy metrics for the selected ARIMA models for Kenya, Rwanda, Tanzania,

and Uganda based on an 80% training and 20% testing split.

Country Rain_MAE Train_RMSE Train_MAPE Test MAE Test RMSE Test MAPE
Kenya 0.37 0.46 58.72 0.52 0.56 121.85
Rwanda 0.79 1.12 74.42 2.94 3.80 746.17
Tanzania 0.23 0.27 27.57 0.59 0.72 133.13
Uganda 0.24 0.29 28.47 7.11 8.76 1671.98

Table 4 shows model fit statistics for the four

3.5. Residual Diagnostics

countries' ARIMA models, including estimated error
variance o°, log-likelihood (LogLik), and AIC and BIC
values. Kenya's ARIMA (0,2,1) model has a small error
variance (0°= 0.27) and a LogLik of -19.39, indicating a
reasonable fit for a second-differenced series. Rwanda's
ARIMA (1,2,0) has the highest error variance (o*= 1.26)
and lowest LogLik (-40.80), indicating higher variability
and lower model fit compared to other countries.
Tanzania's ARIMA (4,2,0) model has a low error variance
(0°= 0.15) and larger LogLik (-11.05). This, combined with
a low AIC (32.10) and BIC (38.39), shows that the model
captures the underlying dynamics more effectively despite
having more parameters. Uganda's ARIMA (1,2,0) has the
lowest error variance (6°= 0.12) and a high log-likelihood
(-9.37), resulting in the lowest AIC (22.74) and BIC (25.26)
among all countries. Overall, these findings show that,
while all four ARIMA models produce statistically
adequate fits, Tanzania and Uganda have the highest
overall model performance, whereas Rwanda has the
weakest due to larger error variance and lower likelihood.

Table 5 shows the Ljung-Box test findings for the
residuals of the selected ARIMA models across all four
nations. The Ljung-Box statistic examines the null
hypothesis, which states that the model residuals are
independently  distributed  with no  lingering
autocorrelation. Across all nations, the p-values are
considerably above the 5% significance threshold (Kenya:
p = 0.6267; Rwanda: p = 0.9213; Tanzania: p = 0.9335;
Uganda: p = 0.5421), indicating that the null hypothesis
was not rejected. This result demonstrates that the
residuals behave like white noise, indicating that the
models accurately captured the autocorrelation structure
in the differenced under-five mortality series. The
consistently high p-values across all models show that
there is no substantial serial dependency in the residuals,
supporting the appropriateness of the selected ARIMA
models for forecasting and indicating that no further
model modification is necessary in terms of residual
autocorrelation.
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Table 4. ARIMA model fit statistics for the four countries, including estimated error variance (Sigma®), log-
likelihood values, and associated AIC and BIC measures.

Country ARIMA Model LigLik AIC BIC

Kenya 0,2,1) 0.27 -19.39 42.77 45.29
Rwanda (1,2,0) 1.26 -40.80 85.59 88.11
Tanzania (4,2,0) 0.15 -11.05 32.10 38.39
Uganda (1,2,0) 0.122 -9.37 22.71 25.26

Table 5. Ljung-Box test results assessing residual autocorrelation for the selected ARIMA models in Kenya,

Rwanda, Tanzania, and Uganda.

Country ARIMA Model Q statistic P-value
Kenya 0,2,1) 8.022 0.627
Rwanda (1,2,0) 4.512 0.921
Tanzania (4,2,0) 4.286 0.934
Uganda (1,2,0) 8.895 0.542

3.6. Forecasting

Figure 2 shows ARIMA-based projections of under-five
mortality rates for Kenya, Rwanda, Tanzania, and Uganda
from 2023 to 2030, with historical values in solid black,
anticipated values in dashed green lines, and 95%
confidence intervals represented by shaded green regions.
These ranges show the range within which future
mortality estimates are projected to fall with 95%
certainty, and they broaden with time as uncertainty
increases as the model projects further beyond the
observed data. The predictions for all four countries show
persistent declines in under-five mortality; nevertheless,
the predicted reductions are inadequate for any of the
nations to meet the SDG 3.2 target of 25 deaths per 1,000

{a) Kenya — Forecast

Linder-5 Morlalily Rate

Linder-5 Morlalily Rate

live births, as illustrated by the red dashed line. Kenya
(Fig. 2a) exhibits a moderate declining trend but remains
above the SDG criteria for the projection period. Rwanda
(Fig. 2b), despite experiencing the highest historical fall,
remains above the objective. Tanzania (Fig. 2c¢) shows
significant gains, but the anticipated values remain above
the SDG objective even after allowing for uncertainty.
Uganda (Fig. 2d) is on a similar course, with mortality
progressively declining but still expected to surpass the
target by 2030. Overall, while improvements are predicted
to continue, the projection intervals show that, even under
the most optimistic scenarios, none of the four countries is
expected to fulfil the SDG 3.2 under-five mortality target
by 2030.

{b) Rwanda - Forecast

Year
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(z) Tanzania — Forecast (d) Uganda — Forecast

Under-5 Martality Rate
Undar-5 Martality Rate

Year Year

Fig. (2). (a-d) Projection of under-five mortality rates (UFMR) for Kenya, Rwanda, Tanzania, and Uganda from 2023 to 2030, with SDG
target (red line).

4. DISCUSSION were obtained by using the arima algorithm for each
nation using the estimation dataset to determine the
optimal p, d, and q parameters. Other models are
statistically efficient since their AIC and BIC values were
higher. The suitability of the selected models is further
supported by the ARIMA fit statistics. Rwanda was the
least favoured, most likely because of structural volatility
in its mortality series, while Tanzania and Uganda showed
the highest log-likelihood values and the lowest estimated
error variance. All models showed comparatively good in-
sample performance, as evidenced by the low training
MAE and RMSE values, according to performance
evaluation using an 80/20 split. Out-of-sample perfor-
mance, however, was inconsistent: Rwanda and Uganda
experienced a notable increase in test-set errors, espe-
cially MAPE, which suggests that this could be caused by
either local shocks or higher recent variability or
structural breaks underpinning ARIMA models [29]. Kenya

The findings of this analysis indicate considerable
gains in reducing under-five mortality in Kenya, Rwanda,
Tanzania, and Uganda from 1995 to 2022, consistent with
advances in the region described by recent global
assessments of child survival [1, 4]. All four countries
display pronounced downward trends in the mortality
rates over time, but at very different speeds. Rwanda
made the fastest progress, which likely reflects very
intense post-conflict health system strengthening, versus
Kenya, Tanzania, and Uganda, where improvements they
experienced have been more incremental. These
differences reveal heterogeneity in the delivery and
impact of interventions to improve child survival in East
Africa, as observed elsewhere [26, 27]. The stationarity
assessment provided a critical foundation for model
development. The strong stationarity after differencing
reflects the smooth long-term decline in US5MR and : L
supports the appropriateness of ARIMA models for these f'and Tangma, on the other hand, had reasonable stability
series [12]. Differencing was therefore required to in predictions.
stabilise the mean, and the number of differences needed The overall suitability of the models' fit was confirmed
for each country was reported in the results table. Once by residual diagnostics. The Ljung-Box Q-test produced
differenced, the ADF tests indicated significant substantial p-values (all > 0.54), indicating that the
stationarity (all p < 0.005), confirming the suitability of ARIMA models sufficiently compensated for temporal
ARIMA-type models for further analysis. dependence in the differenced series and supporting the

According to a comparison of modelling techniques, lack of significant residual autocorrelation. These findings

ARIMA models outperformed both ARFIMA and hybrid are consistent with the typical model adequacy standards

models for this dataset, which is consistent with the for time series forecasting [30].

benefits of ARIMA for comparatively smooth, short- Forecasts for the years 2023 to 2030 indicate that
memory demographic processes that have been previously under-five mortality will continue to decline in all four
documented [6]. Although long-memory behaviour can be nations. However, the SDG 3.2 objective of 25 fatalities
accommodated by ARFIMA models [8, 28], the current per 1,000 live births by 2030 is still exceeded by expected
time series did not exhibit such persistent long memory rates [1, 4, 31]. Not a single nation is predicted to meet

reliance. Thus, ARIMA (0,2,1) for Kenya, ARIMA (1,2,0) for the SDG objective within the prediction range, even with
Rwanda and Uganda, and ARIMA (4,2,0) for Tanzania the strongest confidence interval limitations. This is in line
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with global data showing that several low- and middle-
income nations are either already failing to meet their
SDG objectives for child survival or are in danger of failing
to doso[1, 4].

The results allow for the drawing of two key insights.
The ARIMA models offer a reasonably solid and
economical method for modelling and projecting under-5
mortality in East Africa; nevertheless, the accuracy of
estimates depends on the stability of current data avai-
lable for each country. Second, while significant improve-
ment, the decline rate is insufficient to achieve SDG 3.2 by
2030; this indicates the need for more funding for health
access, nutrition initiatives, vaccination coverage, and
mother, newborn, and child health programs throughout
the region.

The study has significant drawbacks. Annual national
data were used, perhaps masking important subnational
variances in child mortality. The univariate ARIMA models
have little explanatory power due to their focus on
healthcare access, immunisation, nutrition, and socio-
economic determinants [6]. Projections presume the past
is prologue, thus any unexpected shock, such as a
pandemic or war, could impact future outcomes. Large
test-set MAPE for Rwanda and Uganda indicates a
turbulent market, which ARIMA may not have fully
captured [7]. Using secondary international datasets
results in an estimated uncertainty [1]. Finally, multi-
variate or machine learning methodologies can enhance
prediction performance for future investigations.

CONCLUSION

In this article, we have used ARIMA (p, d, q), ARFIMA
(p, d, ), and a hybrid model to predict under-five mortality
and have examined the long-term patterns of whether it is
increasing, decreasing, or stable in all the countries.
According to the study's findings, all four nations signifi-
cantly reduced USmr between 1995 and 2022, which is
consistent with regional accomplishments reported in
previous reports on global child survival [1, 4, 31]. Despite
this progress, the first ADF tests of the data revealed that
the raw mortality series were non-stationary, necessitating
the differencing of these series before modelling. ARIMA
outperformed ARFIMA and hybrid alternatives in terms of
model fit, prediction accuracy, and residual diagnostics,
making it the best modelling technique after second
differencing.

For each of the four countries, ARIMA models consis-
tently demonstrated excellent in-sample perfor-mance,
passed every residual independence test recomm-ended by
Ljung-Box, and produced accurate projections between
2023 and 2030. Despite optimistic confidence ranges, the
forecast estimates show that all countries are still not on
track to meet the SDG 3.2 target of reducing under-five
mortality to 25 deaths per 1,000 live births by 2030. These
recent observations of high volatility are likely to continue,
since Tanzania and Uganda show higher predictive trajecto-
ries, while Rwanda and Uganda show greater uncertainty.

These findings highlight progress made and ongoing
efforts to reduce under-five mortality in eastern Africa. Key

factors for sustainable progress include investment in
primary healthcare systems, expansion of coverage to
essential maternal and child health services, improve-ments
in nutritional programs, and immunisation coverage; these
need to be harnessed. Additionally, this work highlights the
significance of employing robust time series modelsl in
health planning and recognises that more sophisticated
multivariate or machine-learning techniques may continue
to increase prediction accuracy.
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