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Abstract:
Introduction: :  Despite significant advancements over the previous three decades, under-five mortality is still  a
significant public health concern in East Africa. Sustainable Development Goal (SDG) 3.2 calls for a reduction in
under-five mortality  to  25 deaths per 1,000 live births by 2030.  Recent  evaluations show that  the area is  not  on
course to attain the SDG objective, despite considerable declines in Kenya, Rwanda, Tanzania, and Uganda. This
study compares the forecasting performance of Autoregressive Integrated Moving Average (ARIMA), Autoregressive
Frictionally  Integrated  Moving  Average  (ARFIMA),  and  hybrid  models  for  predicting  under-five  mortality  rates
(U5MR) in four East African countries and assesses their projected progress toward SDG 3.2.

Methods: Annual U5MR data for 1995–2022 were obtained from the World Bank. Differencing was used to attain
stationarity after initial Augmented Dickey-Fuller (ADF) tests revealed non-stationarity in all four nations. ARIMA,
ARFIMA, and hybrid models tailored to each country were fitted and assessed using AIC, BIC, RMSE, MAE, MAPE,
and R2. The Ljung-Box test was used to determine residual independence. The best-performing models were used to
create forecasts for 2023 to 2030.

Results: In every country, ARIMA models performed better than ARFIMA and hybrid models, exhibiting the best
residual diagnostics and the lowest error metrics. Through 2030, U5MR is expected to continue declining, although
none of the four nations are expected to meet the SDG 3.2 objective.

Discussion:  To  achieve  SDG  3.2  in  East  Africa,  child  survival  initiatives  and  healthcare  systems  must  be
strengthened.

Conclusion:  In  every  country,  ARIMA  models  performed  better  than  other  models,  showing  the  best  residual
diagnostics and the lowest error metrics. Although U5MR is expected to continue declining through 2030, none of the
four nations is expected to meet the SDG 3.2 objective.
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1. INTRODUCTION
Sustainable Development Goal (SDG) 3.2, which seeks

to lower under-five mortality to 25 deaths per 1,000 live
births  by  2030,  places  a  strong  emphasis  on  reducing
under-five  mortality  [1].  Due  to  enduring  socioeconomic
disparities, health system constraints, and unequal access
to  high-impact  child  health  interventions,  East  Africa
continues  to  see  slight  decreases  than  the  rest  of  the
world  despite  advances  [2-4].

In  2023,  the  UN  Inter-agency  Group  for  Child
Mortality Estimation (UN IGME) reported a global under-
five mortality rate (U5MR) of roughly 37 deaths per 1,000
live  births  [2,  3].  In  sub-Saharan  Africa,  the  U5MR
remains about 68 deaths per 1,000 live births, according
to the most recent data [1]. While recent data for Kenya,
Rwanda,  Tanzania,  and  Uganda  differ,  several  national
estimates  indicate  Uganda's  U5MR  at  39  per  1,000  live
births, which is still significantly higher than the SDG 3.2
target of 25 per 1,000 [5]. These results show that, while
significant  reductions  have  been  made  throughout  the
area, the rate of decline has slowed in the SDG era, with
global yearly reductions falling from approximately 3.7%
in 2000-2015 to 2.2% in 2015-2023 [1, 3].

Time-series  approaches,  such  as  the  Autoregressive
Integrated Moving Average (ARIMA) model, are commonly
used to model and forecast health indicators because they
successfully capture short-term autocorrelation and linear
temporal  structure  [6].  For  series  with  long-memory  or
slow-decaying  correlations,  the  Autoregressive  Fracti-
onally  Integrated  Moving  Average  (ARFIMA)  model  may
provide  better  performance  via  fractional  differencing.
Hybrid  techniques  that  incorporate  ARIMA and ARFIMA
have also received attention for capturing both short- and
long-term memory properties [7, 8]

However, few studies have evaluated ARIMA, ARFIMA,
and hybrid models for forecasting under-five mortality in
East Africa. Understanding the most accurate forecasting
strategy  is  critical  to  helping  the  region's  progress
towards SDG 3.2. This study examines and evaluates the
forecasting effectiveness of ARIMA, ARFIMA, and hybrid
ARIMA-ARFIMA models for Kenya, Rwanda, Tanzania, and
Uganda using panel data from 1995 to 2022.

2. METHOD AND MATERIALS

2.1. Data Source
Using  annual  time-series  data  from  Kenya,  Rwanda,

Tanzania,  and Uganda,  we analysed under-five  mortality
rates per 1,000 live births. Statistics from 1995-2022 were
gathered from the World Bank's web-based development
indicators catalogue. This balanced panel of four countries
(with  data  from  1995-2022)  allows  for  consistent
comparisons between them across time. Data series from
each country were examined using time-series models. To
assess  the  effectiveness  of  univariate  time  series
forecasting  on  mortality  rate  trajectories,  no  further
exogenous  factors  were  added.  U5MR  is  defined  as  the
number of deaths among children under five per 1,000 live
births.

2.2. Study Variables
This study measures the UFMR, which is the number

of deaths in children under five (U5D) per 1,000 live births
each year.  Our  goal  is  to  anticipate  the  rate  (dependent
variable).  These  models  are  univariate,  relying  solely  on
historical  U5MR  values  to  predict  future  values.  The
models use time (measured in years) as the independent
variable  to  capture  temporal  patterns  and  trends  in  the
under-five  mortality  rate  from  1995  to  2022.  No  other
factors  are  utilised  in  these  models,  aligning  with  the
focus  on  mortality  rate  time-series  behaviour.

2.3.  Stationarity  and  Time  Series  Modelling
Approach

2.3.1. Stationarity
Prior  to  modelling,  the  stationarity  properties  of  the

under-five  mortality  series  were  evaluated  using  the
Augmented Dickey-Fuller (ADF) test, which determines if
a time series has a unit root, indicating non-stationarity.
The ADF test relies on the following regression in (Eq. 1):

(1)

where,  yt  is  the  time  series  value,  ∇yt  =  yt  -  yt-1

represents first differencing, t  is the time trend, γ is the
coefficient used to test for a unit root, p is the number of
lagged difference term added to remove autocorrelation,
and εt is a white noise. The hypothesis tested is

H0: the series has a unit root (non-stationary).
Ha: the series is stationary.
If  the  ADF  test  statistic  is  more  negative  than  the

critical  value,  or  if  the  p-value  is  >  0.05,  the  null
hypothesis  is  rejected,  showing  stationary  behaviour.  If
not, the series is deemed non-stationary, and differencing
is  required  to  stabilise  the  mean  and  variance.  Also,
detrending  and  Box-Cox  transformation  may  be  applied.
Stationarity  is  required  for  ARIMA  and  ARFIMA  models
because  non-stationary  data  can  produce  biased  para-
meter  estimates  and  incorrect  forecasts.

2.3.2. Autoregressive Integrated Moving Average
The  ARIMA  method  delineates  the  linear  trends  and

short-term  variations  in  the  under-five  mortality  rate
series for each nation [7].  Stationary time series data or
data that has been rendered stationary through differen-
cing  demonstrates  robust  performance  [7,  9,  10].  The
ARIMA  model  is  characterised  by  three  parameters:  p,
representing the number of autoregressive (AR) terms; d,
indicating the degree of differencing; and q, denoting the
number of moving average (MA) terms [11, 12]. An ARIMA
model is defined as (Eq. 2):

(2)

where ϕB and θB denotes polynomials in the backshift
operator B.
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2.3.3. Autoregressive Fractionally Integrated Moving
Average

The  ARFIMA  model  is  employed  in  mortality  data  to
identify  long-memory  characteristics  and  trends  that
ARIMA models may struggle to detect [7, 12]. The extent
of  long-range  dependence  is  assessed  by  measuring  the
fractional  differencing  parameter  [12,  13].  This  is
beneficial  in  contexts  such  as  health  data,  where
autocorrelations  in  the  data  progressively  decline  over
time  [14,  15].  The  ARFIMA  model  is  characterized  by
three  parameters:  p,  representing  the  number  of
autoregressive  (AR)  terms;  df  ,  indicating  the  degree  of
frictional  differencing;  and  q,  denoting  the  number  of
moving average (MA) terms. An ARFIMA model is defined
as (Eq. 3):

(3)

with the frictional differencing operator given by the
binomial expansion (Eq. 4):

(4)

2.3.4. ARIMA-ARFIMA Hybrid Model
The  hybrid  model  improves  prediction  accuracy  by

combining the long-memory attributes of ARFIMA with the
short-memory structure of ARIMA [7]. This study's hybrid
model  amalgamates  forecasts  from  the  ARIMA  and
ARFIMA  models,  capitalising  on  the  advantages  of  both
methodologies. Following the classical residual-modelling
strategy (Eqs. 5 and 6):

Step 1: Fit ARIMA to the original series, yt

Step 2: Extract residuals:

Step 3: Fit an ARFIMA model to the ARIMA residuals
to capture long-memory structure.

Step 4: Combine forecasts:

(5)

This framework facilitates the integration of ARIMA's
predictive  capabilities  for  short-term  trends  with
ARFIMA's  capacity  for  long-term  dependencies.

2.4. Model Selection and Parameter Optimisation

2.4.1. Model Selection
Model selection in time-series analysis is choosing the

best structure to capture the stochastic patterns found in
a  dataset.  For  ARIMA-type  models,  this  method  entails
determining  the  best  autoregressive  order  (p),  differen-
cing order (d), and moving-average order (q) [7]. Selection
is  frequently  guided  by  information  criteria  such  as  the
Akaike Information Criterion (AIC), corrected AIC (AICc),
and  Bayesian  Information  Criterion  (BIC),  which  discou-
rage  excessive  parameterisation  while  rewarding  impr-
oved  fit  [16].  AIC  value  is  given  by  (Eq.  6):

(6)

where, k represents the number of parameters and L
represents  the  likelihood.  In  contrast  to  the  Akaike
Information  Criterion  (AIC),  the  Bayesian  Information
Criterion (BIC) imposes a more stringent penalty on model
complexity; lower values signify a superior fit [16, 17]. BIC
value is given by (Eq. 7):

(7)

where n represents the quantity of observations. In the
process of model selection, AIC and BIC are calculated to
determine the most suitable parameter combinations [17].
Lower  information-criterion  values  suggest  better-suited
models. Automated techniques, such as the auto.arima (in
R software version 3.6.3) algorithm, is frequently used in
time-series  modelling  nowadays.  Auto.arima  searches
systematically across a wide range of p,  d,  and q  values,
uses unit-root tests to identify acceptable differencing, and
assesses candidate models using AICc or BIC [16]. It also
checks  for  stationarity  and  invertibility  restrictions,  as
well  as  seasonal  components  where  applicable.  This
automated  methodology  promotes  efficiency  and  model
parsimony  while  offering  a  data-driven  foundation  for
selecting  well-specified  ARIMA  models  [18,  19].  When
selecting  ARFIMA  models,  it's  important  to  choose
fractional differencing parameters that are stationary and
invertible  within  the  range  of  -0.5  to  0.5  [7].  Hybrid
modelling  approaches  often  begin  by  selecting  the  best
ARIMA and ARFIMA models  separately  before  assessing
the value of merging their projections [20].

2.4.2. Parameter Estimation
Maximum  likelihood  estimation  (MLE)  is  commonly

used  to  estimate  parameters  in  ARIMA,  ARFIMA,  and
hybrid models. In ARIMA models, MLE is used to estimate
the  autoregressive  and  moving-average  parameters  by
maximising  the  observed  series'  likelihood  under  the
assumed  model  [21].  The  differencing  order  d  assures
stationarity, whilst the calculated coefficients must adhere
to  theoretical  restrictions  that  ensure  the  model's
stationarity  and  invertibility  [21].

2.4.3. Model Diagnostics and Validation
For ARFIMA models, MLE also estimates the fractional

differencing parameter, allowing the model to reflect long-
memory  features.  The  parameter  estimate  technique
ensures that the fractional differencing value is within the
feasible  range,  which  maintains  model  stability.  Hybrid
model  parameter  estimation  normally  entails  estimating
each component model individually and then establishing
combination  weights,  which  are  frequently  chosen  to
minimise forecasting error metrics such as the Root Mean
Squared  Error  (RMSE).  MLE  produces  consistent  and
efficient parameter estimations across model classes when
the  underlying  assumptions  are  met.  Estimated
parameters must be statistically significant, theoretically
sound,  and  supported  by  diagnostic  tests  [21].  Model
diagnostics are required to ensure that the selected and
estimated model accurately captures the underlying data-
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generation  process.  Diagnostic  evaluation  is  primarily
concerned with the behaviour of  model residuals [22].  A
correctly stated model should produce residuals that look
like white noise, such as uncorrelated, random, and with
constant variance [22]. Residual independence is typically
evaluated using the Ljung–Box Q-test, which tests the null
hypothesis that model residuals exhibit no autocorrelation
[22]. The following provides the test statistic (Eq. 8):

(8)

where ρk is the sample autocorrelation at lag k, n is the
number  of  observations,  h  is  the  number  of  lags  being
tested, and Q is the Ljung-Box statistic. A non-significant
p-value  supports  the  adequacy  of  the  fitted  model  [22].
Model  adequacy  is  further  assessed  using  forecast
accuracy  metrics,  including  Mean  Absolute  Error,  Root
Mean Square Error, Mean Absolute Percentage Error, and
R2,  to  ensure  that  the  model  performs  reliably  in  both
fitting past observations and predicting future values [23].
The average magnitude of errors is quantified by the Mean
Absolute  Error,  or  MAE.  The  Mean  Absolute  Error
diminishes  as  model  accuracy  improves.  The  optimal
approach for understanding the overall average error is to
utilize the same units as the original data [24]. It is given
by (Eq. 9):

(9)

The  Mean  Absolute  Percentage  Error  (MAPE)
simplifies  the  comprehension  of  errors  by  representing
them  as  percentages.  Better  forecasting  accuracy  is
indicated  by  a  lower  MAPE  [23,  24].  MAPE  is  given  as
follows in (Eq. 10):

(10)

Root  Mean  Square  Error  (RMSE)  penalises  large
errors  severely  because  of  squaring  [24].  Better  perfor-
mance is indicated by a lower RMSE [9, 22, 23]. and given
by (Eq. 11):

(11)

Contextual  judgement  is  used  to  determine  whether
outlier sensitivity or percentage error is  more important
when one metric is inconsistent (such as one model has a
lower MAE but a higher RMSE) [23, 25].

3. RESULTS

3.1. Exploratory Data Analysis
Figure  1a-d  indicate  that  under-five  mortality  rates

decreased significantly  in all  four East  African countries
between  1995  and  2022,  albeit  the  amount  of  reduction
varied  by  country.  Kenya  has  had  a  continuous  and
constant drop, from more than 110 fatalities per 1,000 live
births in the mid-1990s to around 41 deaths per 1,000 in
2022. Rwanda has shown the most dramatic improvement,
with  mortality  dropping  from more  than  220  deaths  per
1,000 live births in 1995 to around 38 deaths per 1,000 in
2022,  owing  primarily  to  faster  increases  between  2000
and  2010.  Tanzania  also  shows  a  smooth  and  steady
decline, falling from approximately 160 to 42 deaths per
1,000  during  the  timeframe,  while  Uganda  follows  a
similar downward pattern, falling from around 165 to 40
deaths per 1,000. Overall, the four panels show persistent
improvements in child survival across the region; however,
despite these gains, none of the countries have yet met the
SDG  3.2  target  of  25  deaths  per  1,000  live  births,
highlighting  the  need  for  further  strengthening  of  child
health measures.
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Fig.  (1a-d).  Trend plot  of  Under-Five  Mortality  Rates  (UFMR) for  Kenya,  Rwanda,  Tanzania,  and Uganda,  illustrating the  historical
changes in mortality rates from 1995 to 2022.

3.2. Stationarity Test
Initial Augmented Dickey-Fuller (ADF) tests on the raw

under-five mortality series for Kenya, Rwanda, Tanzania,
and Uganda revealed that all four countries exhibited non-
stationary data with p-values greater than 0.05, indicating
the  presence  of  unit  roots.  As  a  result,  differencing  was
applied  to  each  country's  series,  and  a  column  in  the
results table indicates the number of differences needed to
ensure stationarity for each dataset. After differing twice,
the  ADF  tests  were  redone,  and  Table  1  displays  the
resulting  ADF  statistics  and  p-values  for  the  four
countries. All examples had p-values < 0.005, supporting
the alternative hypothesis and rejecting the unit-root null.
Rwanda and Uganda, for example, with the ADF statistics
of -18.51 (p = 0.0001) and -7.92 (p = 0.0005), respectively,
but  Kenya  and  Tanzania  also  show  high  indications  of
stationarity.  These  findings  demonstrate  that,  following
proper  differencing,  the  under-five  mortality  series  from
1995 to 2022 are stationary at the 5% level

3.3. Model Selection
Table 2  summarises the ARIMA model orders chosen

for Kenya, Rwanda, Tanzania, and Uganda, together with
their  respective  AIC  and  BIC  values.  After  comparative
examination  revealed  that  ARIMA  models  were  better
suited  to  the  current  data  than  ARFIMA  or  hybrid
alternatives, the auto.arima method was used to determine
the  best  specification  for  each  country.  Auto.arima  runs
through multiple combinations of p, d, and q values, uses
unit-root testing to guide differencing, and selects models
with  the  lowest  information-criterion  values.  For  Kenya,
the  technique  used  ARIMA (0,2,1),  which  had  an  AIC  of
42.77 and a BIC of 45.29. Rwanda and Uganda both chose
ARIMA  (1,2,0)  as  their  best  models,  demonstrating
relatively simple autoregressive structures after differen-
cing.  Tanzania  required  a  more  sophisticated

autoregressive component, with ARIMA (4,2,0) providing
the best results (AIC = 32.10; BIC = 38.39). Overall, the
chosen  models  offer  the  most  statistically  efficient  and
concise  ARIMA  specifications  for  the  differenced  series,
proving ARIMA's usefulness for modelling and forecasting
under-five mortality in the four nations.

3.4. Model Performance Comparison
Table 3 summarizes the training and testing accuracy

metrics  for  the  selected  ARIMA  models,  which  were
trained with 80% of the time-series data and tested with
20%.  Across  the  training  set,  all  four  models  had
reasonably low MAE, RMSE, and MAPE values, indicating
strong in-sample fitting. Kenya's ARIMA (0,2,1) achieved
reasonable  accuracy  (MAE  =  0.37;  RMSE  =  0.46),
whereas Rwanda's ARIMA (2,1,0) generated more training
errors  (MAE  =  0.79;  RMSE  =  1.12),  indicating  greater
variability  in  its  historical  pattern.  Tanzania's  ARIMA
(4,2,0) and Uganda's ARIMA (2,1,0) produced the best in-
sample results, with low MAE and RMSE values (MAE ≈
0.23-0.24;  RMSE  ≈  0.27-0.29)  that  closely  matched  the
actual data. In contrast, the test-set (20%) findings show
higher variability in out-of-sample predicting performance.
Kenya  and  Tanzania  exhibit  reasonably  steady
generalization,  with  moderate  gains  in  MAE  and  RMSE
(Kenya MAE = 0.52; Tanzania MAE = 0.59), showing that
their  ARIMA  models  maintained  respectable  predictive
accuracy  after  training.  However,  Rwanda  and  Uganda
show  significant  declines  in  forecast  performance,
particularly in MAPE, with Rwanda achieving a Test MAPE
of 746.17 and Uganda 1671.98. These substantial out-of-
sample errors point to increased structural fluctuations or
anomalies in the latter stages of their time series. Overall,
Tanzania's  ARIMA  (4,2,0)  model  generalises  the  best
under  the  80/20  split,  while  Rwanda  and  Uganda  have
worse  predictive  stability  despite  good  in-sample
performance.
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Table  1.  Kenya,  Rwanda,  Tanzania,  and  Uganda  all  have  time series  for  under-five  mortality  rates  that  are
stationary at the 5% significance level, according to the results of the stationarity test.

Country ADF Statistic p-value Stationary Differencing

Kenya -3.76 0.0033 Yes 2

Rwanda -18.51 0.0001 Yes 2

Tanzania -5.88 0.001 Yes 2

Uganda -7.92 0.0005 Yes 2

Table 2. Selected ARIMA model orders and corresponding AIC and BIC values for Kenya, Rwanda, Tanzania,
and Uganda.

Country ARIMA (p, d, q) AIC BIC

Kenya (0, 2, 1) 42.77 45.29

Rwanda (1, 2, 0) 85.59 88.11

Tanzania (4, 2,0) 32.10 38.39

Uganda (1, 2,0) 22.71 25.26

Table 3. Training and testing accuracy metrics for the selected ARIMA models for Kenya, Rwanda, Tanzania,
and Uganda based on an 80% training and 20% testing split.

Country Rain_MAE Train_RMSE Train_MAPE Test_MAE Test_RMSE Test_MAPE

Kenya 0.37 0.46 58.72 0.52 0.56 121.85

Rwanda 0.79 1.12 74.42 2.94 3.80 746.17

Tanzania 0.23 0.27 27.57 0.59 0.72 133.13

Uganda 0.24 0.29 28.47 7.11 8.76 1671.98

Table  4  shows  model  fit  statistics  for  the  four
countries'  ARIMA  models,  including  estimated  error
variance  σ2,  log-likelihood  (LogLik),  and  AIC  and  BIC
values.  Kenya's  ARIMA  (0,2,1)  model  has  a  small  error
variance  (σ2= 0.27)  and  a  LogLik  of  -19.39,  indicating  a
reasonable  fit  for  a  second-differenced  series.  Rwanda's
ARIMA (1,2,0)  has  the  highest  error  variance  (σ2= 1.26)
and  lowest  LogLik  (-40.80),  indicating  higher  variability
and  lower  model  fit  compared  to  other  countries.
Tanzania's ARIMA (4,2,0) model has a low error variance
(σ2= 0.15) and larger LogLik (-11.05). This, combined with
a low AIC (32.10) and BIC (38.39), shows that the model
captures the underlying dynamics more effectively despite
having more parameters. Uganda's ARIMA (1,2,0) has the
lowest error variance (σ2= 0.12) and a high log-likelihood
(-9.37), resulting in the lowest AIC (22.74) and BIC (25.26)
among  all  countries.  Overall,  these  findings  show  that,
while  all  four  ARIMA  models  produce  statistically
adequate  fits,  Tanzania  and  Uganda  have  the  highest
overall  model  performance,  whereas  Rwanda  has  the
weakest due to larger error variance and lower likelihood.

3.5. Residual Diagnostics
Table  5  shows  the  Ljung-Box  test  findings  for  the

residuals  of  the  selected  ARIMA  models  across  all  four
nations.  The  Ljung-Box  statistic  examines  the  null
hypothesis,  which  states  that  the  model  residuals  are
independently  distributed  with  no  lingering
autocorrelation.  Across  all  nations,  the  p-values  are
considerably above the 5% significance threshold (Kenya:
p  = 0.6267; Rwanda: p  = 0.9213; Tanzania: p  = 0.9335;
Uganda: p  = 0.5421), indicating that the null  hypothesis
was  not  rejected.  This  result  demonstrates  that  the
residuals  behave  like  white  noise,  indicating  that  the
models accurately captured the autocorrelation structure
in  the  differenced  under-five  mortality  series.  The
consistently  high  p-values  across  all  models  show  that
there is no substantial serial dependency in the residuals,
supporting  the  appropriateness  of  the  selected  ARIMA
models  for  forecasting  and  indicating  that  no  further
model  modification  is  necessary  in  terms  of  residual
autocorrelation.
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Table 4. ARIMA model fit statistics for the four countries, including estimated error variance (Sigma2), log-
likelihood values, and associated AIC and BIC measures.

Country ARIMA Model σ2 LigLik AIC BIC

Kenya (0, 2, 1) 0.27 -19.39 42.77 45.29
Rwanda (1, 2, 0) 1.26 -40.80 85.59 88.11
Tanzania (4, 2,0) 0.15 -11.05 32.10 38.39
Uganda (1, 2,0) 0.122 -9.37 22.71 25.26

Table 5. Ljung–Box test results assessing residual autocorrelation for the selected ARIMA models in Kenya,
Rwanda, Tanzania, and Uganda.

Country ARIMA Model Q statistic P-value

Kenya (0,2,1) 8.022 0.627
Rwanda (1,2,0) 4.512 0.921
Tanzania (4,2,0) 4.286 0.934
Uganda (1,2,0) 8.895 0.542

3.6. Forecasting
Figure 2 shows ARIMA-based projections of under-five

mortality rates for Kenya, Rwanda, Tanzania, and Uganda
from 2023 to  2030,  with  historical  values  in  solid  black,
anticipated  values  in  dashed  green  lines,  and  95%
confidence intervals represented by shaded green regions.
These  ranges  show  the  range  within  which  future
mortality  estimates  are  projected  to  fall  with  95%
certainty,  and  they  broaden  with  time  as  uncertainty
increases  as  the  model  projects  further  beyond  the
observed data. The predictions for all four countries show
persistent  declines  in  under-five  mortality;  nevertheless,
the  predicted  reductions  are  inadequate  for  any  of  the
nations to meet the SDG 3.2 target of 25 deaths per 1,000

live  births,  as  illustrated  by  the  red  dashed  line.  Kenya
(Fig. 2a) exhibits a moderate declining trend but remains
above the SDG criteria for the projection period. Rwanda
(Fig. 2b), despite experiencing the highest historical fall,
remains  above  the  objective.  Tanzania  (Fig.  2c)  shows
significant gains, but the anticipated values remain above
the  SDG  objective  even  after  allowing  for  uncertainty.
Uganda  (Fig.  2d)  is  on  a  similar  course,  with  mortality
progressively  declining  but  still  expected  to  surpass  the
target by 2030. Overall, while improvements are predicted
to continue, the projection intervals show that, even under
the most optimistic scenarios, none of the four countries is
expected to fulfil the SDG 3.2 under-five mortality target
by 2030.
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Fig. (2). (a-d) Projection of under-five mortality rates (UFMR) for Kenya, Rwanda, Tanzania, and Uganda from 2023 to 2030, with SDG
target (red line).

4. DISCUSSION
The  findings  of  this  analysis  indicate  considerable

gains in reducing under-five mortality in Kenya, Rwanda,
Tanzania, and Uganda from 1995 to 2022, consistent with
advances in  the  region  described  by  recent  global
assessments  of  child  survival  [1,  4].  All  four  countries
display  pronounced  downward  trends  in the  mortality
rates  over  time,  but  at  very  different  speeds.  Rwanda
made  the  fastest  progress,  which likely  reflects  very
intense post-conflict health system strengthening, versus
Kenya, Tanzania, and Uganda, where improvements they
experienced  have  been  more  incremental.  These
differences  reveal  heterogeneity  in  the delivery  and
impact of  interventions to improve child survival  in East
Africa,  as  observed  elsewhere  [26,  27].  The  stationarity
assessment  provided  a  critical  foundation  for  model
development.  The  strong  stationarity  after  differencing
reflects  the  smooth  long-term  decline  in  U5MR  and
supports the appropriateness of ARIMA models for these
series  [12].  Differencing  was  therefore  required  to
stabilise the mean, and the number of differences needed
for each country was reported in the results table. Once
differenced,  the  ADF  tests  indicated  significant
stationarity  (all  p  <  0.005),  confirming  the  suitability  of
ARIMA-type models for further analysis.

According  to  a  comparison  of  modelling  techniques,
ARIMA  models  outperformed  both  ARFIMA  and  hybrid
models  for  this  dataset,  which  is  consistent  with  the
benefits  of  ARIMA  for  comparatively  smooth,  short-
memory demographic processes that have been previously
documented [6]. Although long-memory behaviour can be
accommodated  by  ARFIMA  models  [8,  28],  the  current
time  series  did  not  exhibit  such  persistent  long  memory
reliance. Thus, ARIMA (0,2,1) for Kenya, ARIMA (1,2,0) for
Rwanda  and  Uganda,  and  ARIMA  (4,2,0)  for  Tanzania

were  obtained  by  using  the  arima  algorithm  for  each
nation  using  the  estimation  dataset  to  determine  the
optimal  p,  d,  and  q  parameters.  Other  models  are
statistically efficient since their AIC and BIC values were
higher.  The  suitability  of  the  selected  models  is  further
supported  by  the  ARIMA  fit  statistics.  Rwanda  was  the
least favoured, most likely because of structural volatility
in its mortality series, while Tanzania and Uganda showed
the highest log-likelihood values and the lowest estimated
error variance. All models showed comparatively good in-
sample  performance,  as  evidenced  by  the  low  training
MAE  and  RMSE  values,  according  to  performance
evaluation  using  an  80/20  split.  Out-of-sample  perfor-
mance,  however,  was  inconsistent:  Rwanda  and  Uganda
experienced  a  notable  increase  in  test-set  errors,  espe-
cially MAPE, which suggests that this could be caused by
either  local  shocks  or  higher  recent  variability  or
structural breaks underpinning ARIMA models [29]. Kenya
and Tanzania, on the other hand, had reasonable stability
in predictions.

The overall suitability of the models' fit was confirmed
by  residual  diagnostics.  The  Ljung-Box  Q-test  produced
substantial  p-values  (all  >  0.54),  indicating  that  the
ARIMA  models  sufficiently  compensated  for  temporal
dependence in the differenced series and supporting the
lack of significant residual autocorrelation. These findings
are consistent with the typical model adequacy standards
for time series forecasting [30].

Forecasts  for  the  years  2023  to  2030  indicate  that
under-five  mortality  will  continue  to  decline  in  all  four
nations.  However,  the  SDG  3.2  objective  of  25  fatalities
per 1,000 live births by 2030 is still exceeded by expected
rates [1,  4,  31].  Not a single nation is predicted to meet
the SDG objective within the prediction range, even with
the strongest confidence interval limitations. This is in line
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with  global  data  showing  that  several  low-  and  middle-
income  nations  are  either  already  failing  to  meet  their
SDG objectives for child survival or are in danger of failing
to do so [1, 4].

The results allow for the drawing of two key insights.
The  ARIMA  models  offer  a  reasonably  solid  and
economical method for modelling and projecting under-5
mortality  in  East  Africa;  nevertheless,  the  accuracy  of
estimates  depends  on  the  stability  of  current  data  avai-
lable for each country. Second, while significant improve-
ment, the decline rate is insufficient to achieve SDG 3.2 by
2030; this indicates the need for more funding for health
access,  nutrition  initiatives,  vaccination  coverage,  and
mother,  newborn, and child health programs throughout
the region.

The study has significant drawbacks. Annual national
data  were  used,  perhaps  masking  important  subnational
variances in child mortality. The univariate ARIMA models
have  little  explanatory  power  due  to  their  focus  on
healthcare  access,  immunisation,  nutrition,  and  socio-
economic determinants [6]. Projections presume the past
is  prologue,  thus  any  unexpected  shock,  such  as  a
pandemic  or  war,  could  impact  future  outcomes.  Large
test-set  MAPE  for  Rwanda  and  Uganda  indicates  a
turbulent  market,  which  ARIMA  may  not  have  fully
captured  [7].  Using  secondary  international  datasets
results  in  an  estimated  uncertainty  [1].  Finally,  multi-
variate  or  machine  learning  methodologies  can  enhance
prediction performance for future investigations.

CONCLUSION
In this article, we have used ARIMA (p, d, q), ARFIMA

(p, d, q), and a hybrid model to predict under-five mortality
and have examined the long-term patterns of whether it is
increasing,  decreasing,  or  stable  in  all  the  countries.
According  to  the  study's  findings,  all  four  nations  signifi-
cantly  reduced  U5mr  between  1995  and  2022,  which  is
consistent  with  regional  accomplishments  reported  in
previous reports on global child survival [1, 4, 31]. Despite
this progress, the first ADF tests of the data revealed that
the raw mortality series were non-stationary, necessitating
the  differencing  of  these  series  before  modelling.  ARIMA
outperformed ARFIMA and hybrid alternatives in terms of
model  fit,  prediction  accuracy,  and  residual  diagnostics,
making  it  the  best  modelling  technique  after  second
differencing.

For  each  of  the  four  countries,  ARIMA models  consis-
tently  demonstrated  excellent  in-sample  perfor-mance,
passed every residual independence test recomm-ended by
Ljung-Box,  and  produced  accurate  projections  between
2023 and 2030. Despite optimistic confidence ranges,  the
forecast  estimates  show that  all  countries  are  still  not  on
track  to  meet  the  SDG  3.2  target  of  reducing  under-five
mortality to 25 deaths per 1,000 live births by 2030. These
recent observations of high volatility are likely to continue,
since Tanzania and Uganda show higher predictive trajecto-
ries, while Rwanda and Uganda show greater uncertainty.

These  findings  highlight  progress  made  and  ongoing
efforts to reduce under-five mortality in eastern Africa. Key

factors  for  sustainable  progress  include  investment  in
primary  healthcare  systems,  expansion  of  coverage  to
essential maternal and child health services, improve-ments
in nutritional programs, and immunisation coverage; these
need to be harnessed. Additionally, this work highlights the
significance  of  employing  robust  time  series  models1  in
health  planning  and  recognises  that  more  sophisticated
multivariate or machine-learning techniques may continue
to increase prediction accuracy.
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