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Abstract:
Introduction: CD4 cell counts provide insight into the health of a person’s immune system, as well as information
about  how  their  disease  is  progressing.  Boosting  the  immune  level  of  individuals  living  with  HIV  through
antiretroviral medication is the most effective way to prevent complications and illnesses caused by Opportunistic
Infections (OIs).

Methods: In this study, we conducted a longitudinal cohort analysis of CD4 count in people living with HIV using
additive  negative  binomial  mixed-effects  models.  A  flexible  Generalized  Additive  Mixed-effects  Model  (GAMM)
framework was employed to capture complex nonlinear patterns in repeated CD4 measurements. The analysis was
based on longitudinal data from the CAPRISA 002 Acute Infection (AI) study at the Centre for the AIDS Programme of
Research in South Africa. Key variables, such as age, baseline BMI, and follow-up duration (time), were analyzed
nonparametrically, along with other relevant factors analyzed parametrically.

Results: The study results  revealed significant effects of  baseline viral  load and HAART initiation on CD4 count
progression.  Patients  initiating  HAART  showed  a  1.233-fold  increase  in  expected  CD4  count  compared  to  pre-
treatment levels. Baseline viral load negatively impacted CD4 count, even with small unit changes (γ =-1.581e-07, p-
value=0.00079).  Smooth terms of  age (edf  = 14.24,  p-value < 2e-16),  time (edf  = 10.343,  p-value < 2e-16),  and
baseline BMI (edf = 3.044, p-value = 2.21e-06) exhibited significant non-linear relationships with CD4 count. Spline
plots indicated gradual CD4 improvement over time, suggesting long-term benefits of HAART, especially in older and
higher-BMI patients.

Discussion: The findings of our analysis offer a deeper understanding of the functional relationship between the
outcome variable and key predictors over time. The research found that initiating antiretroviral therapy improves
trajectories of CD4 counts, whereas higher baseline viral load significantly impairs immune recovery over time. The
modeling  further  revealed  that  age,  time,  and  baseline  BMI  have  a  significant  nonlinear  impact  on  CD4  count
dynamics over time.

Conclusion: The study establishes that  BMI has an impact  on the progression and immune responses of  Highly
Active Antiretroviral Therapy (HAART). The significant nonlinear effect of time suggests that the progress of patients’
CD4 count is slow, and higher CD4 count levels are observed after several treatment visits based on the studied data
set. HIV patients who do not maintain immunological stability by consistently receiving antiretroviral medication face
an increased risk of illness if they contract OIs due to weakened immune response.
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distribution, CAPRISA, CD4 count.
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1. INTRODUCTION
Human  Immunodeficiency  Virus  (HIV),  which  causes

Acquired Immune Deficiency Syndrome (AIDS), remains a
major  global  health  concern.  Studies  show  that  Sub-
Saharan Africa bears the greatest share of the HIV/AIDS
burden  worldwide  [1-3].  Despite  numerous  studies,
articles, and discussions on HIV/AIDS, it remains a critical
worldwide issue and a hindrance to progress. The impact
of the HIV epidemic varies across regions worldwide, with
Sub-Saharan  Africa  being  the  most  affected  region
compared  to  other  parts  of  the  world  [1-4].  The  lessons
learned  from  these  regions  are  crucial  for  the  global
community [3-6]. While South Africa has one of the highest
HIV  prevalence  globally,  rising  infection  rates  are  also
being  observed  across  other  regions,  including  parts  of
South and Southeast Asia, Latin America, Eastern Europe,
Central and East Asia, the Middle East, and North Africa
[3, 6].

According  to  the  2019  UNAIDS  report,  since  the
identification of the virus in 1983, over 70 million people
have  contracted  HIV,  and  more  than  40  million  people
have passed away due to AIDS-related causes around the
world.  Additionally,  the  report  states  that  7000  new
infections are reported every day [1-5]. At the end of 2017,
it  was  estimated  that  around  36.9  million  people
worldwide  were  living  with  HIV,  with  the  range  of  the
estimate being 31.1 to 43.9 million people. Although the
percentage  of  adults  aged  15-49  living  with  HIV  was
estimated  to  be  around  0.8%  [0.6-0.9%],  there  is  still
significant  variation  in  the  prevalence  of  the  epidemic
across different countries [7]. However, global endeavors
to  combat  the  pandemic  are  having  a  notable  impact.
Despite  ongoing  progress  in  HIV-related  prevention
strategies,  clinical  care,  and  therapeutic  interventions,
leading to a modest reduction in the annual incidence of
HIV infections and mortality linked to AIDS, AIDS and its
associated  complications  remain  significant  contributors
to  global  mortality  rates  [1,  4-7].  The  effects  of  HIV  are
wide-ranging  and  include  lower  life  expectancy,
diminished  economic  growth,  and  higher  health  care
expenses.  These  outcomes  can  have  adverse  effects  on
social and political stability and hinder the achievement of
global health goals. This may pose a threat to countrywide
security and the stability of many nations [1, 7].

Every  person,  regardless  of  their  race,  religion,
gender, political beliefs, financial status, or social status,

has the fundamental right to good health. Women’s health
is  determined  by  a  variety  of  factors,  including  their
emotion,  social,  and physical  well-being, as well  as their
economic circumstances and biology. Women experience
increased  biological  and  social  vulnerability  to  HIV
infection,  with  the  risk  being  particularly  elevated  in
developing  regions  [1,  2,  8-10].  To  attain  good  health,
women  have  emphasized  the  importance  of  equality,
shared family responsibilities, development, and peace in
both national and global forums [1, 4-7].

HIV/AIDS  has  implications  that  extend  beyond
women’s  health  and  affect  the  economic  aid  and
livelihoods  of  their  families.  As  a  result,  the  impact  of
HIV/AIDS alongside other Sexually Transmitted Infections
(STIs)  on  social,  economic,  and  health  outcomes  has  a
significant gender dimension that must not be disregarded
[1, 4-6, 10-12]. The use of statistical models to study the
evolving patterns of HIV can aid clinicians in identifying
individuals who are more susceptible to the disease and in
developing strategies to prevent its spread [4, 5, 13, 14].
Despite current antiretroviral treatment recommendations
being uniform for all HIV patients, conditional models that
account  for  each  patient's  unique  CD4  cell/viral  load
characteristics can provide clinicians with more accurate,
individualized information to better interpret patient data
and avoid misleading or inaccurate conclusions [1, 13, 14].

The levels of CD4 cells in the body indicate the overall
health of the immune system [4-7, 15]. In people who do
not  have  HIV,  CD4  counts  typically  range  between  500
and 1500 per cubic milliliter. HIV-positive individuals with
CD4  counts  above  500  and  strong  immune  responses
usually  have  good  health.  Conversely,  those  with  CD4
counts  below  200  are  at  high  risk  of  developing  serious
illness and even mortality [1, 4-7, 15].

When  CD4  counts  are  low,  patients  experience
weakened immunity. If individuals living with HIV are not
receiving treatment or do not have the virus under control,
they become susceptible to opportunistic infections, which
increase  their  risk  of  developing  serious  illnesses  [4-7].
The  most  effective  way  to  prevent  these  infections  and
diseases is by strengthening the immune system using a
combination of Multiple Antiretroviral (ARV) drugs, known
as HAART. While early diagnosis and effective treatment
are  believed  to  be  critical  in  controlling  HIV,  further
research is required to improve our understanding of the
virus’s prognosis and infectiousness [1, 6]. Utilizing data-
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driven  models  to  study  HIV  biomarkers  can  play  a  vital
role  in  achieving  this  goal.  This  study  builds  upon  our
previous  work,  conducted  by  Yirga  et  al.  [4],  and  forms
part  of  the  first  author’s  doctoral  dissertation,  Yirga  AA
[1].  The  objective  of  this  study  is  to  use  GAMM  that
incorporates the negative binomial distribution to analyze
longitudinal  CD4  count  data.  The  study  focuses  on
describing CD4 trajectories after HIV seroconversion and
examines  their  association  with  key  clinical  and
demographic factors, including HAART initiation, baseline
viral load, age, and BMI. Specifically, we aim to model the
impact  of  time,  age,  and  baseline  BMI  on  patients’  CD4
count progression nonparametrically, while incorporating
other covariates parametrically. To gain a more thorough
understanding of the functional relationship between the
response  variable  and  the  covariates,  the  current  study
employed  the  best  approach  by  using  a  generalized
additive mixed-effects model, which is a flexible modeling
framework designed to capture both linear and nonlinear
patterns  in  longitudinal  count  data  exhibiting  over-
dispersion.

2. MATERIALS AND METHODS

2.1. Data Description
The  study  used  data  from  the  Centre  of  the  AIDS

Programme  of  Research  in  South  Africa  (CAPRISA)  002
Acute  Infection  (AI)  study,  conducted  at  the  Doris  Duke
Medical  Research  Institute  (DDMRI)  of  the  Nelson  R.
Mandela School of Medicine at the University of KwaZulu-
Natal,  Durban,  South  Africa.  The  study  enrolled  HIV-
infected women and followed them closely to study disease
progression and CD4 count/viral load evolution [1, 5, 16,
17].  Between  August  2004  and  May  2005,  CAPRISA
established a cohort of high-risk HIV-negative women who
were enrolled in  an intensive follow-up study to  monitor
HIV acquisition and related clinical outcomes. Women who
subsequently  acquired  HIV  were  recruited  into  the
CAPRISA  002  Acute  Infection  (AI)  study  and  followed
closely  to  characterize  early  disease  progression  and
CD4/viral load evolution [1, 4-7]. More information on the
study  dataset  and  a  brief  summary  can  be  found  in  the
authors’ previous work [1, 5, 7].

2.2. Inclusion and Exclusion Criteria
After HIV infection, participants were followed closely

with  regular  CD4  count  and  viral  load  measurements.
Women whose CD4 count fell below 350 cells/mm3 for two
consecutive visits within six months, or who developed an
AIDS-defining  illness  (WHO  clinical  stage  3–5),  were
referred to public sector clinics for Antiretroviral Therapy
(ART)  evaluation.  According  to  South  African  National
Department of Health guidelines, ART initiation occurred
at  CD4  ≤200  cells/mm3  until  2015,  after  which  the
threshold increased to CD4 ≤500 cells/mm3 [1, 5, 16, 17].
Participants were monitored until ART initiation and then
followed  long-term,  with  structured  clinical  assessments
and the option of extended annual follow-up for up to 15
additional  years,  depending  on  eligibility  and  study
retention procedures [5]. For the present analysis, all HIV-

infected women from the CAPRISA 002 cohort who had at
least one CD4 count measurement during follow-up were
included.  This  resulted  in  235  participants  contributing
7,019 longitudinal CD4 observations, with each participant
contributing  between  2  and  61  measurements.  No
exclusion criteria were applied. A diagrammatic overview
of  the  CAPRISA  002  AI  cohort  study  design,  including
screening,  enrollment,  seroconversion,  and  inclusion  in
the analytic dataset, is available in the reference provided
in the study [6].

2.3. Methods
Multiple  linear  regression  models  are  used  to  model

the  relationship  between  two  or  more  independent
variables and a dependent variable (or response). We can
broaden  this  concept  to  the  Generalized  Linear  Models
(GLMs),  which  permit  a  variety  of  distributions  for  the
outcome variable beyond the Gaussian distribution [1, 18,
19]. If a response variable’s range consists of non-negative
integers (count values) and follows a Poisson distribution,
the assumption is that the mean and variance are equal.
However, this equality may not be held in many real-life
scenarios.  In  situations  where  the  variance  exceeds  the
mean  (i.e.,  overdispersion),  the  negative  binomial
regression model is  an appropriate option [1,  4,  20,  21].
The negative binomial model is an extension of the Poisson
model,  relaxing  the  stringent  assumption  that  the  mean
and  variance  are  equal.  It  is  widely  used  for  modeling
count data that exhibit overdispersion [1, 4, 20, 21].

Linear Mixed Models (LMMs) are standard regression
methods used to investigate longitudinal data studies. The
typical format of an LMM can be represented as follows:

(1)

where yij  is  an outcome variable that indicates the jth

measurement  on  the  ith  subject,  xij,j  =  1,  …,  p  are  the
predictor variables, β0,β1,…, βip are fixed effects, bi0, bi1,…,
bip are random effects, zij’s are covariates for the random
effects,  and  εij’s  are  random  errors  [1].  Assuming  the
outcome  variable  follows  a  distribution  from  the
exponential family, it is not necessary to presume normal
distribution for generalizing expression (1). In such cases,
we  can  merge  the  mixed  model  concept  with  GLM,
yielding  a  generalized  linear  mixed  model  (GLMM)  [1,
22-24].

GLMMs  expand  upon  GLMs  by  including  random
effects in the linear predictor η(·). They build on the LMMs
by  incorporating  both  fixed  and  random  effects,  which
enables  the  modeling  of  correlated  data  that  may  not
follow  a  normal  distribution.  This  approach  can  address
the  challenge  of  over-dispersion  in  longitudinal  studies
while  also  accounting  for  population  heterogeneity
[22-24].  To  investigate  CD4  counts  in  HIV-infected
patients in relation to HAART and other key factors in a
previous  study,  Yirga  et  al.  [4]  employed  a  negative
binomial regression within the framework of generalized
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linear  mixed  models  (GLMMs).  The  general  form  of  a
GLMM  can  be  represented  as  follows:

(2)

where a variable yij,i = 1,…,n, j = 1,…, p is the outcome
of interest. The distribution of yij is determined by a set of
covariates,  represented by random effects  (u1,…,uq),  and
belongs  to  the  exponential  family.  The  explanatory
variables,  xij,  are  fixed  and  describe  the  effects  of  the
predictors, and the relationship between the response and
predictors  is  determined by the link function g(·),  which
relates  the  conditional  mean  of  the  response  to  the
predictors [1]. Information on GLM, LMM, and GLMM is
widely available in the literature [22-29].

GLMMs permit the representation of covariate effects
as  quadratic,  square  root,  or  cubic  terms  if  they  are
necessary  for  a  better  fit  [1,  29,  30].  Hence,  the
researcher must be familiar with the functional forms of
the  explanatory  variables  in  advance  for  parametric
regression  models.  The  suitability  of  parametric
regression models depends on the level of understanding
[31].  Although  parametric  methods  assume  linear
dependence,  it  may not  always be preferable.  Often,  the
relationship  between outcome and explanatory  variables
cannot be identified by a specific functional form. In such
situations,  semiparametric  additive  mixed  models  are
essential.

Additionally,  the  relationship  between  the  outcome
variable and the covariates can be intricate, and functional
forms  of  covariates  are  not  typically  known  in  real  data
analysis [31, 32]. Moreover, parametric models suffer from
inflexibility  or  limitation  in  several  situations,  making  it
challenging  to  find  an  appropriate  model  [1,  24].  To
address  such  issues,  nonparametric  regression  methods
have been introduced. These methods allow estimation of
flexible, functional forms from the data to model complex
relationships between the outcome and a set of predictor
variables [1, 33].

Nonparametric regression methods enable selection of
the most suitable functional forms for the model from the
available  data,  thereby  reducing  potential  biases  arising
from  parametric  models  [33,  34].  Relaxing  the  linearity
assumption  in  nonparametric  modeling  enables  more
flexible data exploration, thereby revealing structures that
would otherwise be overlooked. However, nonparametric
approaches  may  not  perform  well  when  the  model  has
multiple covariates, as the large number of covariates may
yield insufficient data, leading to unacceptable variance in
the estimates. The issue of variance increasing rapidly as
the  dimensionally  increases  is  known  as  the  “curse  of
dimensionality [35]. Another concern with nonparametric
methods that rely on Kernel and Spline estimates, which
are the most commonly used estimators in nonparametric
models,  is  the  interpretation  of  the  results.  The
information  derived  from  these  estimates  is  often
challenging  to  comprehend  [35,  36].  To  address  these

challenges, Hastie and Tibshirani [37] suggested the use
of an Additive Model (AM), which is a generalization of the
nonparametric  multiple  linear  regression  model.  An  AM
that  includes  several  explanatory  variables  can  be
formulated  as:

(3)

Where  Yi  represents  a  response  variable  vector,  X’
represents  a  model  matrix  that  includes  all  strictly
parametric  model  components,  β  represents  the
corresponding parameter vector, fi(·) represents arbitrary
univariate and smooth (nonparametric) functions, one for
each covariate xj, and εi represents random errors [1, 37].
To ensure that these are smooth functions, xix_ixi​ can be
estimated  under  standard  conditions,  such  as  having  an
expected  value  of  zero  (E(fi(xi))=0E(f_i(x_i))  =  0E(fi​(xi
))=0).  These  functions  are  estimated  nonparametrically
rather  than  specified  in  a  parametric  form  [35].
Consequently, the additive model (AM) can accommodate
nonlinearity in covariates that are not the primary focus of
the study and adjust for their effects accordingly [1, 30].

Additive models evaluate the additive estimation of the
effect  of  covariates  in  multivariate  regression  methods.
The benefits  of  additive  estimation are  at  least  two-fold.
First, since each of the individual models' additive terms is
evaluated using a univariate smoother, it avoids the “curse
of  dimensionality”  at  the  expense  of  not  providing  a
universal  approximation.  Second,  the  estimates  of  the
individual  terms provide insight  into  how the dependent
variable  varies  with  the  corresponding  independent
variables  [1,  35].

A smoother is a useful tool that helps to summarize the
trend of a response measurement based on one or multiple
predictorvariables, x1,…, xp. It calculates an estimate of the
trend that has less variability than the response variable
itself. The most important feature of a smoother is that it
is non-parametric, which means that it assumes a flexible
form for the relationship between Y and x1,…, xp. In their
work,  Hastie  and  Tibshirani  [37]  briefly  discussed  the
concept of smoothers. When dealing with additive models,
it is crucial to have a way to represent smooth functions.
According to Hastie and Tibshirani [37], a good approach
is to use spline-like penalized regression smoothers. Spline
smoothing allows for the description of smooth functions
in a way that turns expression (3) into a linear model. This
is accomplished by defining a set of basis functions �ij for
each  function,  which  allows  the  smooth  function  to  be
represented  as  follows:

(4)

where xi’s are covariates, basis functions Øij determine
the  spline  and  the  coefficients  of  the  smoother  is
represented by βij. The model set will require estimation of
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the βij coefficients. Penalized regression smoothers include
various  types  of  basis  functions,  such  as  natural  cubic
splines,  cubic  smoothing  splines,  thin  plate  regression
splines,  and  tensor  product  bases  [37,  38].

There  are  several  methods  for  formulating  and
estimating additive models. One commonly used technique
is the backfitting algorithm, which is a versatile algorithm
capable  of  fitting  AMs.  The  smooth  functions,  fi(·)’s  are
fitted one at a time by taking the residual  yi  -  ∑ j≠i  fi(xi).
Then they are fitted against xi using a smoother function.
The  process  is  repeated  until  convergence.  A
comprehensive  explanation  and  development  of  the
backfitting algorithm are available in this source [37, 38].
The technique commonly used for modeling and inference
in multiple regression models can also be applied to AMs.
However, there are certain situations where AMs may not
be  suitable,  such  as  when  modeling  count  outcomes  or
dealing with large data-mining applications. Additionally,
the backfitting algorithm used in AMs may not be practical
when there are a large number of predictors to fit [35, 37,
39].  To  address  these  limitations,  Hastie  and  Tibshirani
[37] proposed Generalized Additive Models (GAMs), which
can handle  a  wider  range of  distributions  and reduce to
AMs  when  the  outcome  follows  a  normal  distribution.
GAMs offer a solution to the issues associated with AMs
and have been extensively studied [35, 39].

GAMs allow the mean of  the  response variable  to  be
linked nonlinearly to an additive predictor. This approach
combines  the  advantage  of  AMs,  which  can  explore
multiple non-parametric relationships simultaneously, with
the  distributional  flexibility  of  GLMs.  The  general
structure  of  a  GAM  can  be  formulated  as  follows:

(5)

whereas  the  usual  xi’s  represent  covariates,  the
conditional mean of the response variable Y, denoted as µi

=  E(Yi),  is  connected  to  an  additive  function  of  the
predictor  variables  via  a  link  function  g(·)  and  the
functions  fi(·)’s  are  unspecified  smooth  components
modeled  nonparametrically,  such  as  through  cubic
smoothing spline, kernel smoothers, or thin-plate splines
[34,  37,  39-41].  It  should  be  noted  that  the  response
variable  Y  follows  a  distribution  from  the  exponential
family,  and  g(·)  is  a  link  function  that  is  known  to  be
monotonic  and  twice  differentiable  [37].  GAMs  are
nonparametric  methods  that  are  widely  used  for
independent data [32, 40, 42, 43]. In contrast to the AM,
which  was  estimated  using  penalized  regression
smoothers, GAMs use penalized likelihood maximization to
estimate  the  model,  and  the  penalties  are  designed  to
minimize excessively wiggly estimates of the fi terms [37].

Longitudinal data, which involves collecting repeated
measures from multiple subjects over time, is common in
various  scientific  fields  such  as  biology,  ecology,  and
clinical  research.  Parametric  mixed-effects  models  are
robust  and  effective  tools  that  are  widely  used  for
modeling  the  correlations  and  variations  within  and

between subjects in longitudinal data when the models are
correctly  specified.  These  models  are  well-established,
concise, and efficient, and have been extensively studied
and  developed  [25-28].  However,  as  mentioned  above,
parametric  models  can  be  limiting  and  vulnerable  to
errors  arising  from  assumptions  made  during  the
modeling  process.  This  is  particularly  evident  when
modeling  a  repeated  outcome  variable  as  a  function  of
time  and  other  covariates,  where  the  time  effect  can  be
too complex to be accurately captured under a parametric
model.  To  overcome  these  limitations,  nonparametric
models  have  been  developed  for  analyzing  longitudinal
data,  which  can  be  more  flexible  in  relaxing  the
assumptions  made  by  parametric  models,  but  these
models  tend  to  be  more  complex  [44].  Semiparametric
Mixed-effects Models (SMMs) offer a balanced approach
to longitudinal data analysis by integrating the advantages
of  mixed-effects  modeling  with  the  flexibility  of
nonparametric  regression  [1].  Detailed  discussions  of
SMMs  can  be  found  in  various  sources  [40,  45].

Suppose that yij(i  = 1,…,n;j  =  1,…,ni)  is  the response
for  the  ith  subject  at  time  point  tij,  the  SMM  can  be
expressed  as  follows:

(6)

where the variable β  is a p  × 1 vector of coefficients
associated  with  covariates  xij,  and  fi(·)  refers  to  twice-
differentiable smooth functions of time or nonparametric
fixed  effects.  bi  includes  independent  q  ×  1  vectors  of
random effects’ coefficients associated with covariates zij.
Ui(·)  is  an  independent  and  smooth  random-effects
process, and εij is an independent measurement error that
occurs at  a time tij,  which cannot be explained by either
the  fixed-effects  component  (x’ijβ  +  ∑i

p
=1fi(xi))  or  the

random-effects  component  (z’ijbi  +  ∑i
p

=1Ui(xi))  [46].  In
general,  SMMs  consist  of  four  major  components:
parametric fixed-effects (x’ijβ), nonparametric fixed-effects
(fi(·)), parametric random-effects (z’ijbi), and nonparametric
random-effects (Ui(·)).  In their  work,  Wu and Zhang [47]
presented  a  comprehensive  analysis  of  various  types  of
semiparametric  mixed-effects  models  by  examining
different  scenarios  where  one or  two components  of  the
model  (expressed  in  equation  (6))  are  dropped.  For
instance, if the nonparametric random-effects component
is  removed  from  SMM  (6),  the  resulting  model  is
expressed  as  equation  (7)  below,  which  is  equivalent  to
incorporating the random-effects into the additive model
(3), known as the additive mixed model (AMM):

(7)

where X’, β, fi(·), zij, bi, and εij are defined as in (3) and
(6);  εij~N(0,R)  and  bi~N(0,Gθ).  Both  covariate  matrix  R
and  Gθ  are  positive-definite  matrices  depending  on  a
parsimonious set of covariate parameters [32, 34, 40]. The
AMM  expressed  in  equation  (7)  can  be  thought  of  as  a
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combination or hybrid of linear mixed models and additive
models [48, 49].

Generalized  additive  mixed  models  (GAMMs)  are  an
extension of the AMM that allow the response variable to
have a distribution other than the Gaussian [32, 48, 49]. A
GAMM  is  a  more  complex  and  flexible  model  than  an
LMM, where a portion of the linear predictor is specified
as  a  sum  of  smooth  functions  of  one  or  more  predictor
variables,  and  non-normally  distributed  outcomes  are
included [29,  32,  37,  48,  49].  Therefore,  GAMMs can be
considered as an additive extension of generalized linear
mixed models (GLMMs) [32, 34, 37, 48].

Ina previous study, Yirga et al. [4] discussed a negative
binomial  mixed-effects  model.  This  model  specifies  the
expected CD4 count using the mean µij and parameter θ,
which regulates over-dispersion. The relationship between
the  count  response’s  conditional  mean  and  the  linear
predictors  is  established  through  the  logarithmic  link
function. Consistent with our earlier work by Yirga et al.
[4],  this  study  employs  an  additive  negative  binomial
mixed-effects model, in which some or all linear terms are
replaced with  more  flexible  functional  forms.  The  model
can be expressed as follows:

(8)

where  again,  each  fi(·)  is  an  unspecified  smooth
function.  The  model’s  flexibility  is  increased  by  using  a
nonparametric  form  for  the  functions  fi(·),  but  the
additivity  is  still  maintained,  making  it  possible  to
interpret  the model  similarly  to  the GLMM form. One of
the examples of a GAMM is the additive negative binomial
mixed-effects model [48].

The general  structure  of  GAMM can be expressed in
the following way:

(9)

where yij is a non-normally distributed outcome, fi(·) is
a centered twice-differentiable smooth function,  g(·)  is  a
monotonic,  differentiable  link  function,  and  X’,  β,  zij,  bi,
and  εij  are  defined  as  in  equations  (3)  and  (6).  To  make
statistical  inference  for  GAMM,  the  nonparametric
function  fi(·)  must  be  inferred,  which  involves  the
estimation  of  smoothening  parameters  and  variance
components. When the response is Gaussian, and the link
function  is  identity,  Restricted  Maximum  Likelihood
(REML) is used to estimate the nonparametric functions,
smoothers,  and variance components in GAMM [50,  51].
On  the  other  hand,  Penalized  Quasi-Likelihood  (PQL)  is
commonly  used  to  estimate  the  parametric  and
nonparametric functions in GAMM when the response is
non-Gaussian [29]. A detailed discussion of PQL and other
approaches  to  estimate  smoothing  parameters  and
variance components in GAMM is also available and can
be found in several literature sources [29, 41, 44, 49].

3. RESULTS
Tables  1  and  2  provide  a  summary  of  the  baseline

characteristics  for  the  study.  The  study  involved  235
participants  who  were  observed  multiple  times,  ranging
from 2 to 61 times, with a median equal to 29, resulting in
a  total  of  7019  observations.  Out  of  the  total  7019
observations,  the response variable (CD4 cell  count) has
1.5% missing observations. Given the very low proportion
of  missing  data  (<5%)  and  the  consistency  of  results
across approaches [4], we proceeded with complete-case
analysis in the present study. Of the total participants, 105
women  were  living  in  the  rural  area  of  Vulindlela  [5],
which  represents  44.7%  of  the  participants,  while  130
women  (55.3%)  lived  in  the  urban  area  of  eThekwini
(Durban,  KwaZulu-Natal,  South  Africa)  [5].  Participants
enrolled in the study were between 18 and 59 years old,
with  an  average  age  of  27.15  years  and  a  standard
deviation of 6.56 years.  The CD4 count and viral  load at
enrollment had an average of 570, with a range of 182 to
1575 and a  standard deviation of  229.6,  and 140442.31,
with a range of 1 (undetected) to 5510000 and a standard
deviation  of  454895.893,  respectively.  Furthermore,  the
participants'  average  Body  Mass  Index  (BMI)  at
enrollment was 28.93, ranging from 17.89 to 54.89, with a
standard deviation of 7.4. Of the participants, 182 women
(77.4%)  reported  having  a  stable  relationship,  and  224
(95.3%) completed secondary education. A majority of the
participants (78.8%) identified themselves as sex workers,
according to their self-reporting and previous studies [1,
4, 18].

Building on the earlier work conducted by Yirga et al.
[4],  which  employed  a  parametric  negative  binomial
mixed-effects  model  (NBMM)  within  the  GLMM
framework,  assuming  a  linear  relationship  between  the
outcome and covariate, this studyextends the approach by
incorporating  nonparametric  modeling.  Specifically,  this
study  utilizes  a  Generalized  Additive  Mixed  Model
(GAMM)  to  capture  nonlinear  effects  of  time,  age,  and
baseline  BMI,  while  retaining  a  parametric  specification
for  the  remaining  covariates.  The  following  equation
represents  the  proposed  model:

(10a)

(10b)
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Table 1. Baseline descriptive statistics for non-categorical variables.

Variable Descriptive Measures

Mean Standard Deviation Minimum Maximum

CD4 cell counts (cells/µL) 570 229.6 182 1575
HIV viral load (cells/µL) 140442.31 454895.893 1 (undetected) 5510000

Age (Years) 27.15 6.56 18 59
Body Mass Index 28.93 7.4 17.89 54.89

Source: First author’s doctoral dissertation, Yirga AA [1].

Table 2. Baseline descriptive statistics for categorical variables.

Variable Total Variable Total

Place of Residence Number of Sexual Partners
Rural 105 (44.7%) No partner 43 (18.3%)
Urban 130 (55.3%) Stable partner 182 (77.4%)

Educational Level Many partners 10 (4.3%)
Primary schools 11 (4.7%) Number of Women 235

Secondary schools 224 (95.3%)
Source: First author’s doctoral dissertation, Yirga AA [1].

Here,  yij  denotes  the  vector  of  the  response  variable
representing CD4 cell counts, g(·) is the log link function,
and the outcome follows a negative binomial distribution
with  mean  =  µij  and  variance  =  µij  +  θµij

2.  The  terms  γi

represent  parametric  regression  coefficients,  fi(xij)  are
smooth, nonparametric functions of the covariates X, and
the  random  effects  bi  are  assumed  to  follow  a  normal
distribution  with  mean  zero  and  covariance  matrix  Gθ,
denoted  as  bi~N(0,Gθ)  [1,  29,  32,  34,  40].

The  proposed  model  (10)  was  fitted  using  the  R
package mgcv  with the gamm  command [52]. The gamm
command  is  designed  to  avoid  overfitting  by  penalizing
excessively  ‘wiggly’  lines,  so  it  is  possible  to  apply  this
penalty  to  all  continuous  covariates  within  smoothing
functions.  The  model  assesses  the  level  of  support  for  a
‘wiggly’ shape based on the data [31]. Additionally, there
are  multiple  options  available  for  controlling  model
smoothness  with  splines.  Model  (10b)  was  fitted  using
thin-plate  (tp)  shrinkage splines  in  the R package mgcv,
and  convergence  was  achieved.  Thin  plate  shrinkage
splines  have  certain  advantages,  such  as  not  requiring
knot  selection  and  providing  efficient,  stable
approximations. They can also be constructed for smooths
of  multiple  covariates  simultaneously  [53].  Furthermore,
the shrinkage smoothers obtained through the use of the
‘bs’ option within the ‘s’ command are designed in a way
that allows them to be penalized and ultimately excluded
from the model entirely, resulting in smooth terms that do
not  contribute  to  the  model  [37,  48].  The  model  output
consists  of  two  parts:  a  parametric  component  and  a
smooth  (nonparametric)  component.  The  smoother
coefficients (represented by γi’s) are embedded within the
smoothers and are generally difficult to interpret. To fit a
smoother for a specific predictor, the ‘s’  function can be
utilized within the ‘gamm’  command [52].  The degree of

smoothing  in  a  smoother  is  quantified  by  the  effective
degrees  of  freedom  (edf),  which  provide  information  on
the curvature of the fitted line. A relatively high edf value
(≥ 8) suggests that the curve is highly non-linear, while a
smoother with an edf of 1 indicates that the relationship
with the outcome is linear [31, 48].

Using the proposed additive negative binomial mixed-
effects model (model (10)), Table 3 displays the logarithm
of  the  expected  CD4  count  in  the  form  of  parameter
coefficients  and  the  approximate  significance  of  the
smooth terms. The table indicates that the baseline viral
load and initiation of HAART have a significant impact on
the  progression  of  patients’  CD4 count.  The  ‘parametric
coefficients’ section reveals that the patients’ viral load at
the  baseline  has  an  unfavorable  effect  on  the  log  of
expected CD4 count, even with minimal changes in units.
In addition, the expected number of CD4 cells for a patient
who initiates HAART increases by 1.233 (e0.2092) units (95%
CI: 1.851e-01 to 2.333e-01) in comparison to pre-HAART
initiation,  while  other  variables  are  kept  constant.  To
improve clinical interpretability, the effect of baseline viral
load was rescaled to reflect a 1-log10 increase. A one-log10

higher viral load was associated with an estimated 1.58 ×
10−6  decrease  in  expected  CD4  count  (95%  CI:  −2.50  ×
10−6 to −6.58 × 10−7).

The results of edf from Table 3 indicate that age (edf =
14.24, p-value < 2e-16) and time (edf = 10.343, p-value <
2e-16)  variables  have  a  notably  significant  non-linear
effect on the CD4 count of patients. The level of spline for
baseline  BMI (edf  =  3.044,  p-value  = 2.21e-06)  shows a
significant  non-linear  relationship  with  the  response
variable. (Fig. 1) depicts the fitted penalized spline plots
obtained  from  the  analysis,  with  the  shaded  area
representing  the  approximate  95%  confidence  bands  at
each  point.  The  y-axis  displays  the  effect  of  the  smooth
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term, with ‘s’ denoting the smooth term and the number in
the  parentheses  indicating  the  corresponding  smooth
term’s edf value [34]. Upon visual inspection of (Fig. 1), it
is  apparent  that  the  overall  shape  of  the  smoothers
indicates  a  higher  progression  of  CD4 counts  over  time.
The  increment  rate  is  observed  to  be  low  for  the  initial

four years (48 months) and then gradually increases. An
increase in CD4 count over time may provide evidence of
long-term benefits of HAART. The smooth terms age and
baseline  BMI  also  show similar  relationships,  with  older
patients and those with higher BMI at enrollment having a
higher CD4 count.

Table 3. The regression results of the additive negative binomial mixed-effects model.

Parameter Coefficients Estimate Std. Error t-value 95% CI of the Estimate p-value

Intercept 6.334e+00 1.172e-01 54.053 (6.104e+00, 6.564e+00) < 2e-16
Baseline viral load -1.581e-07 4.709e-08 -3.358 (-2.504e-07,

-6.582e-08)
0.00079

Educational level (ref.= Primary school)
Secondary school -1.500e-01 1.056e-01 -1.420 (-3.570e-01, 5.703e-02) 0.15564

HAART initiation (ref.= Pre HAART initiation)
Post HAART initiation 2.092e-01 1.229e-02 17.021 (1.851e-01, 2.333e-01) < 2e-16

Place of residence (ref.= Rural)
Urban 3.569e-02 4.367e-02 0.817 (-4.989e-02, 1.213e-01) 0.41375

Number of sexual partners (ref.= No partner)
Stable partner 4.490e-02 5.529e-02 0.812 (-6.347e-02, 1.533e-01) 0.41679
Many partner -6.587e-02 1.116e-01 -0.590 (-2.847e-01, 1.529e-01) 0.55521

Approximate Significance of Smooth Terms
Smooth Terms edf Ref.df F-value p-value

s(Age) 14.124 14.124 4.710 < 2e-16
s(Time in months) 10.343 10.343 37.692 < 2e-16
s(Baseline BMI) 3.044 3.044 9.759 2.21e-06

Source: First author’s doctoral dissertation, Yirga AA [1].

Fig. (1). Estimated smooth curve for the GAMM model containing all smooth terms.
Source: First author’s doctoral dissertation, YAA [1].



Analysis of CD4 Count in People Living with HIV 9

Fig. (2). Diagnostic plots for checking the adequacy of the fitted model.
Source: First author’s doctoral dissertation, YAA [1].

To validate the fitted model, model diagnostic graphs
were  plotted  and  presented  in  Fig.  (2).  The  normal
Quantile-Quantile  (Q-Q)  plot  on  the  upper  left  is  almost
straight,  indicating  that  the  distributional  assumption  is
reasonable.  The  histogram  of  residuals,  shown  on  the
lower  left,  is  approximately  Gaussian.  The  residual  plot
versus  the  fitted  values  (linear  predictor)  in  the  upper
right reveals that the variance is approximately constant
as the mean increases. In general, the observed values are
positively  correlated  with  the  fitted  values,  as
demonstrated in the lower right plot of (Fig. 2). However,
the blue smooth trend curve deviating considerably from
the  red  reference  line  (perfect  prediction)  at  extremely
high  values  indicates  systematic  underprediction,
increasing  variance  heterogeneity  across  the  prediction
range.  Future  studies  should  explore  variance  modeling
structures and potential transformations to improve model
performance  across  the  full  range  of  CD4  count  values.
Influential observations with extremely high values may be
worth investigating.

4. DISCUSSION
It is assumed in multiple linear regression that the link

between the outcome variable (Y)  and the predictors (X)
remains  linear  or  monotonic  across  all  values.  However,
not  all  regressions  need  to  be  linear  or  have  a  specific

structure, such as being monotonic. To some extent, this
issue  can  be  addressed  by  using  polynomials  [54,  55].
However,  polynomials  may  not  always  be  desirable  in
terms of the model’s fit  properties because adding more
powers of the covariate (X) can create a model selection
problem.  Moreover,  increasing  the  number  of  powers  of
the covariate (X) in the polynomial model may not always
improve  the  model's  accuracy  [56]  and  could  lead  to  a
Runge phenomenon, which is the problem of oscillation at
the  edges  of  an  interval  when  using  high-degree
polynomial interpolation points. Nonparametric regression
methods,  like  Locally  Weighted  Scatterplot  Smoothing,
also  known  as  the  LOESS  smoother,  may  be  a  better
option  for  generalization,  since  this  method  imposes  no
restrictions on the functional form between the outcome
and  the  covariates,  except  that  it  requires  smoothness.
This implies that if there are no restrictions, the fits will be
more  computationally  intensive.  However,  if  LOESS
smoothers  are  correctly  applied,  they  provide  additional
information  from the  data;  however,  the  information  we
obtain  depends  on  the  selection  of  the  smoothing
parameter,  as  is  the  case  with  kernel  smoothing.  GAMs
provide  a  solution  to  these  problems  by  offering  a
framework for modeling flexible, nonlinear relationships in
the data.
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GAM extends  both  multiple  linear  regression  models
and  GLMs,  enabling  the  modeling  of  outcomes  from the
exponential family, including continuous, discrete, count,
and proportion data. GAMs offer flexibility and are used to
better  understand  and  analyze  complex,  nonlinear
relationships within data. They effectively characterize key
features of the relationship between the response variable
and  the  covariates  by  using  smooth  functions,  such  as
splines, which allow for a broad range of functional forms
[1]. To fit a GAM, one can use the gam function from the
mgcv package in R. When fitting a GAM, the covariate (X)
needs to be included in the s (smooth) function to specify a
flexible relationship. The flexibility of splines allows GAM
to  capture  various  nonlinear  aspects  [1].  The  flexible
smooths  in  GAMs  are  made  of  many  smaller  functions
called basis functions. Each smoother is the sum of several
basis functions, and each basis function is multiplied by a
coefficient, which is a parameter in the model. With GAMs,
it is possible to include a mixture of smooth, linear effects,
continuous, counts, or categorical variables in a multiple
regression model format. Not all terms in a GAM have to
be  nonlinear,  as  it  is  possible  to  combine  linear  and
nonlinear  terms.  Adding  a  linear  term  does  not  require
repelling the predictor term in the s function. Linear terms
are particularly useful when we have categorical variables
as predictors in the GAM [1].

GAMM,  a  mixed-effects  version  of  GAM,  is  the  most
effective  model  for  analyzing  nonlinear  trajectories  in
longitudinal  data  [1].  The  relationship  between  the
outcome variable and the predictors is often complex and
involves unknown functional forms of covariates, making
parametric  models  inflexible.  As  a  result,  this  study
utilized the generalized additive mixed-effects approach.
For  the  analysis  of  the  longitudinal  CD4  count  of  HIV-
infected patients, this study utilized an additive negative
binomial  mixed-effects  model,  which  is  an  example  of  a
GAMM. The model accounted for non-parametric effects of
time, age, and baseline BMI, as well as parametric effects
of some available covariates. The analysis identified that
HAART initiation was significantly associated with higher
CD4 counts over time, while higher baseline viral load was
significantly associated with lower CD4 count over time,
consistent  with  established  clinical  understanding.  The
analysis  also  revealed  a  significant  nonlinear  effect
involving age, baseline BMI, and time. The nonparametric
component  indicated  that  older  participants  (above  40
years)  tended  to  have  higher  progression  of  CD4  count,
and individuals with higher baseline BMI showed patterns
of  CD4  improvement  over  follow-up.  However,  this  does
not  imply  that  patients  with  higher  BMI  should  be
neglected clinically. Instead, the study suggests that BMI
plays  a  role  in  drug  metabolism  and  can  influence  the
progression  and  immunological  responses  of  HAART  [1,
57, 58]. The findings may reflect underlying physiological
or metabolic factors, although such interpretations remain
speculative and cannot be confirmed by this observational
analysis.

The significant nonlinear effect of time suggested that
CD4  counts  increased  gradually  and  only  began  to  rise

more noticeably after several follow-up visits. Therefore,
the study emphasizes the importance of initiating effective
HAART  immediately  after  HIV  infection  is  confirmed  to
suppress the increase of viral loads and induce potential
ART benefits that accumulate over time. HIV patients who
are  not  stable  on  HAART  may  be  at  higher  risk  of
developing  illness  if  infected  with  OIs  [1].  Viral  load
rebound due to inconsistent ART use is a major concern in
HIV  management.  However,  these  findings  should  be
interpreted with caution, as the study was not designed to
assess underlying causal mechanisms. All interpretations
reflect  main  effects  only,  as  no  interaction  terms  with
HAART or between covariates were included in the model.
The nonlinear associations observed for age, baseline BMI,
and time reflect overall patterns in CD4 count trajectories
and should not  be interpreted as modifying the effect  of
HAART,  as  no  interaction  terms  were  included  in  the
model.  Any potential  treatment-modifying effects  remain
speculative  and  would  require  explicit  interaction
modeling  in  future  analyses.

Moreover,  the  CAPRISA  002  cohort  consists  of  high-
risk  South  African  women,  many  of  whom  were  sex
workers,  representing  a  population  that  differs  signi-
ficantly  from  other  groups,  such  as  men,  lower-risk
women, or individuals from different geographic or socio-
economic settings. It must be noted that CD4 trajectories,
treatment  access,  and  underlying  health  conditions  may
vary across populations; therefore, the external validity of
our  findings  is  limited,  and  causality  cannot  be  inferred
from this study. The associations observed reflect patterns
within  this  specific  cohort  and  may  be  influenced  by
unmeasured  confounding,  selection  processes,  measure-
ment  limitations,  differential  follow-up,  or  other  cohort-
specific  factors.  The  observational  design,  potential
selection bias at enrollment, differential loss to follow-up,
and  measurement  variability,  such  as  the  timing  of  CD4
and viral load assessments, may affect the interpretation
of estimated results. Therefore, the interpretation of these
findings requires appropriate caution.

5. LIMITATIONS OF THE STUDY
This  study  has  several  important  limitations  that

should be considered when interpreting the findings. The
analysis is based on an observational cohort, which limits
the  ability  to  draw  causal  inferences  about  the  relation-
ships between HAART initiation, viral load, demographic
factors,  and  CD4  count  trajectories.  Unmeasured  con-
founding, selection processes, and time-dependent biases
may influence the observed associations. Additionally, the
data were collected during a historical period when ART
eligibility criteria and treatment guidelines differed from
current  standards,  which  may  affect  the  applicability  of
the findings to contemporary clinical contexts.

Moreover, no formal power calculation was conducted
for  this  secondary  analysis,  and  the  study  may  be
underpowered  to  detect  subtle  nonlinear  effects  or
interactions.  Even  though  the  cohort  included  repeated
CD4  measurements,  follow-up  was  unbalanced,  with
participants  contributing  2  to  61  observations.  Irregular
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visit  spacing  and  differential  loss  to  follow-up  may
introduce  informative  censoring  or  survivorship  bias.
While  the  mixed-effects  modeling  framework  accommo-
dates  unbalanced  data,  residual  bias  cannot  be  fully
excluded.

Although model diagnostic plots generally support the
adequacy of the fitted model, certain limitations warrant
further investigation. Notably, the observed-versus-fitted
values  plot  indicates  systematic  underprediction  at
extreme  values,  suggesting  increasing  heterogeneity  in
variance  across  the  prediction  range.  This  pattern  may
reduce  model  accuracy  in  the  upper  tail  and  suggests
potential instability driven by influential observations with
unusually  high  CD4 values,  which  may  reflect  biological
variability  or  measurement  inconsistencies  not  fully
accounted  for  by  the  current  model.

To improve model performance, future studies should
explore  more  flexible  variance  structures,  such  as
heteroscedastic  models  or  appropriate  data  transfor-
mations,  to  better  capture  the  full  range of  CD4 counts.
Influence diagnostics were conducted in a previous study
by Yirga et al [5], which may inform strategies to mitigate
the  effect  of  extreme  observations  in  future  analyses.
These  refinements  would  enhance  predictive  reliability
and  offer  deeper  insights  into  CD4  progression  under
HAART,  especially  for  patients  with  unusual  immuno-
logical  responses.

Together,  these  limitations  highlight  the  need  for
cautious interpretation of the findings and underscore the
value  of  future  studies  incorporating  causal  inference
methods,  updated  cohorts,  and  more  flexible  modeling
frameworks.

CONCLUSION
This  study  employed  an  additive  negative  binomial

mixed-effects model to investigate the progression of CD4
cell counts among HIV-infected participants, incorporating
both parametric and nonparametric covariates. The results
indicate that baseline viral load and HAART initiation were
significantly  associated  with  patterns  of  CD4 count  over
time. Higher baseline viral load was associated with lower
expected CD4 levels, whereas HAART initiation yielded a
substantial  increase  in  CD4  count,  highlighting  its
treatment  benefit.

The nonparametric components of the model revealed
pronounced  nonlinear  effects  of  time,  age,  and  baseline
BMI.  The  edf  and  corresponding  p-values  indicated  that
these variables demonstrated statistically significant and
complex  influences  on  CD4  progression.  Notably,  CD4
counts  increased  gradually  over  follow-up,  with  a  more
pronounced rise after approximately 4 years,  suggesting
long-term  immunological  benefits  of  sustained  HAART;
however, this pattern should be interpreted as descriptive
rather  than  causal.  Additionally,  older  age  and  higher
baseline  BMI  were  positively  associated  with  improve-
ments  in  CD4  count,  potentially  reflecting  underlying
physiological  factors  such  as  drug  metabolism  and
immune  responsiveness.

These findings reinforce the importance of timely and
consistent initiation of HAART following HIV exposure to
mitigate viral load and optimize long-term immunological
outcomes.  The  observed  nonlinear  dynamics  further
emphasize the need for individualized treatment strategies
that account for patient-specific characteristics, including
age  and  BMI.  Moreover,  the  potential  for  viral  load
rebound  due  to  inconsistent  ART  use  remains  a  critical
concern in HIV management, underscoring the necessity
of  adherence  support  and  ongoing  clinical  monitoring.
Overall, the findings describe patterns of CD4 evolution in
this  cohort  and  should  not  be  interpreted  as  clinical
recommendations.  Future  work  incorporating  causal
inference methods or survival/competing-risk frameworks
may  help  clarify  the  mechanisms  underlying  these
associations.

Survival  data  analysis  is  a  statistical  method used to
analyze data in which the variable of interest is the time
until  a  certain  event  occurs  [59].  This  is  also  known  as
competing  risk  analysis  when  there  are  multiple  events.
The concept of competing risks is based on the idea that
individuals are exposed to several hazards that can cause
an event or experience multiple types of  the same event
(competing  events),  which  will  be  addressed  in  future
research.
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