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Abstract:

Introduction: CD4 cell counts provide insight into the health of a person’s immune system, as well as information
about how their disease is progressing. Boosting the immune level of individuals living with HIV through
antiretroviral medication is the most effective way to prevent complications and illnesses caused by Opportunistic
Infections (Ols).

Methods: In this study, we conducted a longitudinal cohort analysis of CD4 count in people living with HIV using
additive negative binomial mixed-effects models. A flexible Generalized Additive Mixed-effects Model (GAMM)
framework was employed to capture complex nonlinear patterns in repeated CD4 measurements. The analysis was
based on longitudinal data from the CAPRISA 002 Acute Infection (AI) study at the Centre for the AIDS Programme of
Research in South Africa. Key variables, such as age, baseline BMI, and follow-up duration (time), were analyzed
nonparametrically, along with other relevant factors analyzed parametrically.

Results: The study results revealed significant effects of baseline viral load and HAART initiation on CD4 count
progression. Patients initiating HAART showed a 1.233-fold increase in expected CD4 count compared to pre-
treatment levels. Baseline viral load negatively impacted CD4 count, even with small unit changes (y =-1.581e-07, p-
value=0.00079). Smooth terms of age (edf = 14.24, p-value < 2e-16), time (edf = 10.343, p-value < 2e-16), and
baseline BMI (edf = 3.044, p-value = 2.21e-06) exhibited significant non-linear relationships with CD4 count. Spline
plots indicated gradual CD4 improvement over time, suggesting long-term benefits of HAART, especially in older and
higher-BMI patients.

Discussion: The findings of our analysis offer a deeper understanding of the functional relationship between the
outcome variable and key predictors over time. The research found that initiating antiretroviral therapy improves
trajectories of CD4 counts, whereas higher baseline viral load significantly impairs immune recovery over time. The
modeling further revealed that age, time, and baseline BMI have a significant nonlinear impact on CD4 count
dynamics over time.

Conclusion: The study establishes that BMI has an impact on the progression and immune responses of Highly
Active Antiretroviral Therapy (HAART). The significant nonlinear effect of time suggests that the progress of patients’
CD4 count is slow, and higher CD4 count levels are observed after several treatment visits based on the studied data
set. HIV patients who do not maintain immunological stability by consistently receiving antiretroviral medication face
an increased risk of illness if they contract Ols due to weakened immune response.

Keywords: Nonlinear effect, Smoother, Thin plate spline, Generalized additive mixed model, Negative binomial
distribution, CAPRISA, CD4 count.
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1. INTRODUCTION

Human Immunodeficiency Virus (HIV), which causes
Acquired Immune Deficiency Syndrome (AIDS), remains a
major global health concern. Studies show that Sub-
Saharan Africa bears the greatest share of the HIV/AIDS
burden worldwide [1-3]. Despite numerous studies,
articles, and discussions on HIV/AIDS, it remains a critical
worldwide issue and a hindrance to progress. The impact
of the HIV epidemic varies across regions worldwide, with
Sub-Saharan Africa being the most affected region
compared to other parts of the world [1-4]. The lessons
learned from these regions are crucial for the global
community [3-6]. While South Africa has one of the highest
HIV prevalence globally, rising infection rates are also
being observed across other regions, including parts of
South and Southeast Asia, Latin America, Eastern Europe,
Central and East Asia, the Middle East, and North Africa
[3, 6].

According to the 2019 UNAIDS report, since the
identification of the virus in 1983, over 70 million people
have contracted HIV, and more than 40 million people
have passed away due to AIDS-related causes around the
world. Additionally, the report states that 7000 new
infections are reported every day [1-5]. At the end of 2017,
it was estimated that around 36.9 million people
worldwide were living with HIV, with the range of the
estimate being 31.1 to 43.9 million people. Although the
percentage of adults aged 15-49 living with HIV was
estimated to be around 0.8% [0.6-0.9%], there is still
significant variation in the prevalence of the epidemic
across different countries [7]. However, global endeavors
to combat the pandemic are having a notable impact.
Despite ongoing progress in HIV-related prevention
strategies, clinical care, and therapeutic interventions,
leading to a modest reduction in the annual incidence of
HIV infections and mortality linked to AIDS, AIDS and its
associated complications remain significant contributors
to global mortality rates [1, 4-7]. The effects of HIV are
wide-ranging and include lower life expectancy,
diminished economic growth, and higher health care
expenses. These outcomes can have adverse effects on
social and political stability and hinder the achievement of
global health goals. This may pose a threat to countrywide
security and the stability of many nations [1, 7].

Every person, regardless of their race, religion,
gender, political beliefs, financial status, or social status,
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has the fundamental right to good health. Women’s health
is determined by a variety of factors, including their
emotion, social, and physical well-being, as well as their
economic circumstances and biology. Women experience
increased biological and social vulnerability to HIV
infection, with the risk being particularly elevated in
developing regions [1, 2, 8-10]. To attain good health,
women have emphasized the importance of equality,
shared family responsibilities, development, and peace in
both national and global forums [1, 4-7].

HIV/AIDS has implications that extend beyond
women’s health and affect the economic aid and
livelihoods of their families. As a result, the impact of
HIV/AIDS alongside other Sexually Transmitted Infections
(STIs) on social, economic, and health outcomes has a
significant gender dimension that must not be disregarded
[1, 4-6, 10-12]. The use of statistical models to study the
evolving patterns of HIV can aid clinicians in identifying
individuals who are more susceptible to the disease and in
developing strategies to prevent its spread [4, 5, 13, 14].
Despite current antiretroviral treatment recommendations
being uniform for all HIV patients, conditional models that
account for each patient's unique CD4 cell/viral load
characteristics can provide clinicians with more accurate,
individualized information to better interpret patient data
and avoid misleading or inaccurate conclusions [1, 13, 14].

The levels of CD4 cells in the body indicate the overall
health of the immune system [4-7, 15]. In people who do
not have HIV, CD4 counts typically range between 500
and 1500 per cubic milliliter. HIV-positive individuals with
CD4 counts above 500 and strong immune responses
usually have good health. Conversely, those with CD4
counts below 200 are at high risk of developing serious
illness and even mortality [1, 4-7, 15].

When CD4 counts are low, patients experience
weakened immunity. If individuals living with HIV are not
receiving treatment or do not have the virus under control,
they become susceptible to opportunistic infections, which
increase their risk of developing serious illnesses [4-7].
The most effective way to prevent these infections and
diseases is by strengthening the immune system using a
combination of Multiple Antiretroviral (ARV) drugs, known
as HAART. While early diagnosis and effective treatment
are believed to be critical in controlling HIV, further
research is required to improve our understanding of the
virus’s prognosis and infectiousness [1, 6]. Utilizing data-
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driven models to study HIV biomarkers can play a vital
role in achieving this goal. This study builds upon our
previous work, conducted by Yirga et al. [4], and forms
part of the first author’s doctoral dissertation, Yirga AA
[1]. The objective of this study is to use GAMM that
incorporates the negative binomial distribution to analyze
longitudinal CD4 count data. The study focuses on
describing CD4 trajectories after HIV seroconversion and
examines their association with key clinical and
demographic factors, including HAART initiation, baseline
viral load, age, and BMI. Specifically, we aim to model the
impact of time, age, and baseline BMI on patients’ CD4
count progression nonparametrically, while incorporating
other covariates parametrically. To gain a more thorough
understanding of the functional relationship between the
response variable and the covariates, the current study
employed the best approach by using a generalized
additive mixed-effects model, which is a flexible modeling
framework designed to capture both linear and nonlinear
patterns in longitudinal count data exhibiting over-
dispersion.

2. MATERIALS AND METHODS

2.1. Data Description

The study used data from the Centre of the AIDS
Programme of Research in South Africa (CAPRISA) 002
Acute Infection (AI) study, conducted at the Doris Duke
Medical Research Institute (DDMRI) of the Nelson R.
Mandela School of Medicine at the University of KwaZulu-
Natal, Durban, South Africa. The study enrolled HIV-
infected women and followed them closely to study disease
progression and CD4 count/viral load evolution [1, 5, 16,
17]. Between August 2004 and May 2005, CAPRISA
established a cohort of high-risk HIV-negative women who
were enrolled in an intensive follow-up study to monitor
HIV acquisition and related clinical outcomes. Women who
subsequently acquired HIV were recruited into the
CAPRISA 002 Acute Infection (AI) study and followed
closely to characterize early disease progression and
CD4/viral load evolution [1, 4-7]. More information on the
study dataset and a brief summary can be found in the
authors’ previous work [1, 5, 7].

2.2. Inclusion and Exclusion Criteria

After HIV infection, participants were followed closely
with regular CD4 count and viral load measurements.
Women whose CD4 count fell below 350 cells/mm® for two
consecutive visits within six months, or who developed an
AIDS-defining illness (WHO clinical stage 3-5), were
referred to public sector clinics for Antiretroviral Therapy
(ART) evaluation. According to South African National
Department of Health guidelines, ART initiation occurred
at CD4 <200 cells/mm’ until 2015, after which the
threshold increased to CD4 =500 cells/mm?[1, 5, 16, 17].
Participants were monitored until ART initiation and then
followed long-term, with structured clinical assessments
and the option of extended annual follow-up for up to 15
additional years, depending on eligibility and study
retention procedures [5]. For the present analysis, all HIV-

infected women from the CAPRISA 002 cohort who had at
least one CD4 count measurement during follow-up were
included. This resulted in 235 participants contributing
7,019 longitudinal CD4 observations, with each participant
contributing between 2 and 61 measurements. No
exclusion criteria were applied. A diagrammatic overview
of the CAPRISA 002 Al cohort study design, including
screening, enrollment, seroconversion, and inclusion in
the analytic dataset, is available in the reference provided
in the study [6].

2.3. Methods

Multiple linear regression models are used to model
the relationship between two or more independent
variables and a dependent variable (or response). We can
broaden this concept to the Generalized Linear Models
(GLMs), which permit a variety of distributions for the
outcome variable beyond the Gaussian distribution [1, 18,
19]. If a response variable’s range consists of non-negative
integers (count values) and follows a Poisson distribution,
the assumption is that the mean and variance are equal.
However, this equality may not be held in many real-life
scenarios. In situations where the variance exceeds the
mean (i.e., overdispersion), the negative binomial
regression model is an appropriate option [1, 4, 20, 21].
The negative binomial model is an extension of the Poisson
model, relaxing the stringent assumption that the mean
and variance are equal. It is widely used for modeling
count data that exhibit overdispersion [1, 4, 20, 21].

Linear Mixed Models (LMMs) are standard regression
methods used to investigate longitudinal data studies. The
typical format of an LMM can be represented as follows:

Vij = Bo + BraXyy + ot BipXijp +

R DT s i T S

1)
ijq

where y; is an outcome variable that indicates the N
measurement on the i subject, x;j = 1, ..., p are the
predictor variables, B,B,,..., B;, are fixed effects, by, by, ...,
b,, are random effects, z;'s are covariates for the random
effects, and ¢;'s are random errors [1]. Assuming the
outcome variable follows a distribution from the
exponential family, it is not necessary to presume normal
distribution for generalizing expression (1). In such cases,
we can merge the mixed model concept with GLM,
yielding a generalized linear mixed model (GLMM) [1,
22-24].

GLMMs expand upon GLMs by including random
effects in the linear predictor n(-). They build on the LMMs
by incorporating both fixed and random effects, which
enables the modeling of correlated data that may not
follow a normal distribution. This approach can address
the challenge of over-dispersion in longitudinal studies
while also accounting for population heterogeneity
[22-24]. To investigate CD4 counts in HIV-infected
patients in relation to HAART and other key factors in a
previous study, Yirga et al. [4] employed a negative
binomial regression within the framework of generalized
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linear mixed models (GLMMs). The general form of a
GLMM can be represented as follows:

g{E[}FEIIuiJ '--Juq]} = .S{J +
¥ioa By + b + X, byt

where a variable y;i = 1,...,n,j = 1,..., p is the outcome
of interest. The distribution of y; is determined by a set of
covariates, represented by random effects (u,...,u,), and
belongs to the exponential family. The explanatory
variables, x;, are fixed and describe the effects of the
predictors, and the relationship between the response and
predictors is determined by the link function g(-), which
relates the conditional mean of the response to the
predictors [1]. Information on GLM, LMM, and GLMM is
widely available in the literature [22-29].

GLMMs permit the representation of covariate effects
as quadratic, square root, or cubic terms if they are
necessary for a better fit [1, 29, 30]. Hence, the
researcher must be familiar with the functional forms of
the explanatory variables in advance for parametric
regression models. The suitability of parametric
regression models depends on the level of understanding
[31]. Although parametric methods assume linear
dependence, it may not always be preferable. Often, the
relationship between outcome and explanatory variables
cannot be identified by a specific functional form. In such
situations, semiparametric additive mixed models are
essential.

(2)

Additionally, the relationship between the outcome
variable and the covariates can be intricate, and functional
forms of covariates are not typically known in real data
analysis [31, 32]. Moreover, parametric models suffer from
inflexibility or limitation in several situations, making it
challenging to find an appropriate model [1, 24]. To
address such issues, nonparametric regression methods
have been introduced. These methods allow estimation of
flexible, functional forms from the data to model complex
relationships between the outcome and a set of predictor
variables [1, 33].

Nonparametric regression methods enable selection of
the most suitable functional forms for the model from the
available data, thereby reducing potential biases arising
from parametric models [33, 34]. Relaxing the linearity
assumption in nonparametric modeling enables more
flexible data exploration, thereby revealing structures that
would otherwise be overlooked. However, nonparametric
approaches may not perform well when the model has
multiple covariates, as the large number of covariates may
yield insufficient data, leading to unacceptable variance in
the estimates. The issue of variance increasing rapidly as
the dimensionally increases is known as the “curse of
dimensionality [35]. Another concern with nonparametric
methods that rely on Kernel and Spline estimates, which
are the most commonly used estimators in nonparametric
models, is the interpretation of the results. The
information derived from these estimates is often
challenging to comprehend [35, 36]. To address these
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challenges, Hastie and Tibshirani [37] suggested the use
of an Additive Model (AM), which is a generalization of the
nonparametric multiple linear regression model. An AM
that includes several explanatory variables can be
formulated as:

B
,=X'B+ Zﬁ- () + &
i=1

g;, with g £ N(0, &%)

Where Y, represents a response variable vector, X’
represents a model matrix that includes all strictly
parametric model components, B represents the
corresponding parameter vector, fi(-) represents arbitrary
univariate and smooth (nonparametric) functions, one for
each covariate x;, and ¢, represents random errors [1, 37].
To ensure that these are smooth functions, xix ixi can be
estimated under standard conditions, such as having an
expected value of zero (E(fi(xi))=0E(f i(x_ i)) = OE(fi(xi
))=0). These functions are estimated nonparametrically
rather than specified in a parametric form [35].
Consequently, the additive model (AM) can accommodate
nonlinearity in covariates that are not the primary focus of
the study and adjust for their effects accordingly [1, 30].

Additive models evaluate the additive estimation of the
effect of covariates in multivariate regression methods.
The benefits of additive estimation are at least two-fold.
First, since each of the individual models' additive terms is
evaluated using a univariate smoother, it avoids the “curse
of dimensionality” at the expense of not providing a
universal approximation. Second, the estimates of the
individual terms provide insight into how the dependent
variable varies with the corresponding independent
variables [1, 35].

A smoother is a useful tool that helps to summarize the
trend of a response measurement based on one or multiple
predictorvariables, x;,..., x,. It calculates an estimate of the
trend that has less variability than the response variable
itself. The most important feature of a smoother is that it
is non-parametric, which means that it assumes a flexible
form for the relationship between Y and x;,..., x,. In their
work, Hastie and Tibshirani [37] briefly discussed the
concept of smoothers. When dealing with additive models,
it is crucial to have a way to represent smooth functions.
According to Hastie and Tibshirani [37], a good approach
is to use spline-like penalized regression smoothers. Spline
smoothing allows for the description of smooth functions
in a way that turns expression (3) into a linear model. This
is accomplished by defining a set of basis functions [J; for
each function, which allows the smooth function to be
represented as follows:

filx;) = Ll Bj i (x:) = B @

where x;’s are covariates, basis functions @; determine
the spline and the coefficients of the smoother is
represented by B;. The model set will require estimation of
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the B; coefficients. Penalized regression smoothers include
various types of basis functions, such as natural cubic
splines, cubic smoothing splines, thin plate regression
splines, and tensor product bases [37, 38].

There are several methods for formulating and
estimating additive models. One commonly used technique
is the backfitting algorithm, which is a versatile algorithm
capable of fitting AMs. The smooth functions, fi(-)’s are
fitted one at a time by taking the residual yi - 3 .., fi(xi).
Then they are fitted against x; using a smoother function.
The process 1is repeated wuntil convergence. A
comprehensive explanation and development of the
backfitting algorithm are available in this source [37, 38].
The technique commonly used for modeling and inference
in multiple regression models can also be applied to AMs.
However, there are certain situations where AMs may not
be suitable, such as when modeling count outcomes or
dealing with large data-mining applications. Additionally,
the backfitting algorithm used in AMs may not be practical
when there are a large number of predictors to fit [35, 37,
39]. To address these limitations, Hastie and Tibshirani
[37] proposed Generalized Additive Models (GAMs), which
can handle a wider range of distributions and reduce to
AMs when the outcome follows a normal distribution.
GAMs offer a solution to the issues associated with AMs
and have been extensively studied [35, 39].

GAMs allow the mean of the response variable to be
linked nonlinearly to an additive predictor. This approach
combines the advantage of AMs, which can explore
multiple non-parametric relationships simultaneously, with
the distributional flexibility of GLMs. The general
structure of a GAM can be formulated as follows:

9() =X'B+32_ fi (%) ©

whereas the usual x/’s represent covariates, the
conditional mean of the response variable Y, denoted as y;
= E(Yi), is connected to an additive function of the
predictor variables via a link function g¢g(-) and the
functions f/(-)’s are unspecified smooth components
modeled nonparametrically, such as through cubic
smoothing spline, kernel smoothers, or thin-plate splines
[34, 37, 39-41]. 1t should be noted that the response
variable Y follows a distribution from the exponential
family, and g(-) is a link function that is known to be
monotonic and twice differentiable [37]. GAMs are
nonparametric methods that are widely used for
independent data [32, 40, 42, 43]. In contrast to the AM,
which was estimated wusing penalized regression
smoothers, GAMs use penalized likelihood maximization to
estimate the model, and the penalties are designed to
minimize excessively wiggly estimates of the f; terms [37].

Longitudinal data, which involves collecting repeated
measures from multiple subjects over time, is common in
various scientific fields such as biology, ecology, and
clinical research. Parametric mixed-effects models are
robust and effective tools that are widely used for
modeling the correlations and variations within and

between subjects in longitudinal data when the models are
correctly specified. These models are well-established,
concise, and efficient, and have been extensively studied
and developed [25-28]. However, as mentioned above,
parametric models can be limiting and vulnerable to
errors arising from assumptions made during the
modeling process. This is particularly evident when
modeling a repeated outcome variable as a function of
time and other covariates, where the time effect can be
too complex to be accurately captured under a parametric
model. To overcome these limitations, nonparametric
models have been developed for analyzing longitudinal
data, which can be more flexible in relaxing the
assumptions made by parametric models, but these
models tend to be more complex [44]. Semiparametric
Mixed-effects Models (SMMs) offer a balanced approach
to longitudinal data analysis by integrating the advantages
of mixed-effects modeling with the flexibility of
nonparametric regression [1]. Detailed discussions of
SMMs can be found in various sources [40, 45].

Suppose that y,(i = 1,...,n;j = 1,...,n)) is the response
for the i" subject at time point t, the SMM can be
expressed as follows:

J'?I'_.l' = x:}rg +Z:}=1Jﬁ (II} +
z;b; + Yo U (x) +5;

ij’

(6)

where the variable B is a p x 1 vector of coefficients
associated with covariates x; and fi(-) refers to twice-
differentiable smooth functions of time or nonparametric
fixed effects. b, includes independent q x 1 vectors of
random effects’ coefficients associated with covariates z;.
U(:) is an independent and smooth random-effects
process, and ¢; is an independent measurement error that
occurs at a time t;, which cannot be explained by either
the fixed-effects component (x’;8 + 3/..fi(x)) or the
random-effects component (z';b, + 3/.,Uix)) [46]. In
general, SMMs consist of four major components:
parametric fixed-effects (x’;8), nonparametric fixed-effects
(f(*)), parametric random-effects (z’;b;), and nonparametric
random-effects (Uy(+)). In their work, Wu and Zhang [47]
presented a comprehensive analysis of various types of
semiparametric mixed-effects models by examining
different scenarios where one or two components of the
model (expressed in equation (6)) are dropped. For
instance, if the nonparametric random-effects component
is removed from SMM (6), the resulting model is
expressed as equation (7) below, which is equivalent to
incorporating the random-effects into the additive model
(3), known as the additive mixed model (AMM):

¥ij =X'B+ 3, fi () + zi;b; + &5 @

where X', B, fi(), z;, b, and ¢; are defined as in (3) and
(6); €,~N(0,R) and b,~N(0,G,). Both covariate matrix R
and G, are positive-definite matrices depending on a
parsimonious set of covariate parameters [32, 34, 40]. The
AMM expressed in equation (7) can be thought of as a
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combination or hybrid of linear mixed models and additive
models [48, 49].

Generalized additive mixed models (GAMMs) are an
extension of the AMM that allow the response variable to
have a distribution other than the Gaussian [32, 48, 49]. A
GAMM is a more complex and flexible model than an
LMM, where a portion of the linear predictor is specified
as a sum of smooth functions of one or more predictor
variables, and non-normally distributed outcomes are
included [29, 32, 37, 48, 49]. Therefore, GAMMSs can be
considered as an additive extension of generalized linear
mixed models (GLMMs) [32, 34, 37, 48].

Ina previous study, Yirga et al. [4] discussed a negative
binomial mixed-effects model. This model specifies the
expected CD4 count using the mean p; and parameter 8,
which regulates over-dispersion. The relationship between
the count response’s conditional mean and the linear
predictors is established through the logarithmic link
function. Consistent with our earlier work by Yirga et al.
[4], this study employs an additive negative binomial
mixed-effects model, in which some or all linear terms are
replaced with more flexible functional forms. The model
can be expressed as follows:

log(p;;) = X'B + %P, f (x:) + 23, ®)

where again, each f(-) is an unspecified smooth
function. The model’s flexibility is increased by using a
nonparametric form for the functions f(-), but the
additivity is still maintained, making it possible to
interpret the model similarly to the GLMM form. One of
the examples of a GAMM is the additive negative binomial
mixed-effects model [48].

The general structure of GAMM can be expressed in
the following way:

E(H:‘j}':rﬁ*'gf:lﬁ'[x:'}'+zgjbf- ®

where y; is a non-normally distributed outcome, f(-) is
a centered twice-differentiable smooth function, g(-) is a
monotonic, differentiable link function, and X', B, z;, b,
and ¢; are defined as in equations (3) and (6). To make
statistical inference for GAMM, the nonparametric
function fi(-) must be inferred, which involves the
estimation of smoothening parameters and variance
components. When the response is Gaussian, and the link
function is identity, Restricted Maximum Likelihood
(REML) is used to estimate the nonparametric functions,
smoothers, and variance components in GAMM [50, 51].
On the other hand, Penalized Quasi-Likelihood (PQL) is
commonly used to estimate the parametric and
nonparametric functions in GAMM when the response is
non-Gaussian [29]. A detailed discussion of PQL and other
approaches to estimate smoothing parameters and
variance components in GAMM is also available and can
be found in several literature sources [29, 41, 44, 49].
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3. RESULTS

Tables 1 and 2 provide a summary of the baseline
characteristics for the study. The study involved 235
participants who were observed multiple times, ranging
from 2 to 61 times, with a median equal to 29, resulting in
a total of 7019 observations. Out of the total 7019
observations, the response variable (CD4 cell count) has
1.5% missing observations. Given the very low proportion
of missing data (<5%) and the consistency of results
across approaches [4], we proceeded with complete-case
analysis in the present study. Of the total participants, 105
women were living in the rural area of Vulindlela [5],
which represents 44.7% of the participants, while 130
women (55.3%) lived in the urban area of eThekwini
(Durban, KwaZulu-Natal, South Africa) [5]. Participants
enrolled in the study were between 18 and 59 years old,
with an average age of 27.15 years and a standard
deviation of 6.56 years. The CD4 count and viral load at
enrollment had an average of 570, with a range of 182 to
1575 and a standard deviation of 229.6, and 140442.31,
with a range of 1 (undetected) to 5510000 and a standard
deviation of 454895.893, respectively. Furthermore, the
participants' average Body Mass Index (BMI) at
enrollment was 28.93, ranging from 17.89 to 54.89, with a
standard deviation of 7.4. Of the participants, 182 women
(77.4%) reported having a stable relationship, and 224
(95.3%) completed secondary education. A majority of the
participants (78.8%) identified themselves as sex workers,
according to their self-reporting and previous studies [1,
4, 18].

Building on the earlier work conducted by Yirga et al.
[4], which employed a parametric negative binomial
mixed-effects model (NBMM) within the GLMM
framework, assuming a linear relationship between the
outcome and covariate, this studyextends the approach by
incorporating nonparametric modeling. Specifically, this
study utilizes a Generalized Additive Mixed Model
(GAMM) to capture nonlinear effects of time, age, and
baseline BMI, while retaining a parametric specification
for the remaining covariates. The following equation
represents the proposed model:

9(1ij) = vo + vibaseline,iay gy, +

yaeducation; + ysHAART; + yyresidence; +

YSsexualpm'rneri + fl (timein,mnthsl-) s fz(ﬂgei) + (10a)

fz(baseline_BMI;) + bgy; + by;(time_in_months;)
¥ij ~NB (i, i + 0u*); E(yij )
= Var(y;) = w; + 0yt
ij = exp{y, + yybaseline_viral_load; +
y.education; + ysHAART; + ysresidence; +
yssexual_partner; + f; (time_in_months;) + A%
f2(age;) + fz(baseline_BMI;)
+by; + by;(time_in_months;)},
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Table 1. Baseline descriptive statistics for non-categorical variables.

Variable Descriptive Measures
Mean Standard Deviation Minimum Maximum
CDA4 cell counts (cells/pL) 570 229.6 182 1575
HIV viral load (cells/nL) 140442.31 454895.893 1 (undetected) 5510000
Age (Years) 27.15 6.56 18 59
Body Mass Index 28.93 7.4 17.89 54.89
Source: First author’s doctoral dissertation, Yirga AA [1].
Table 2. Baseline descriptive statistics for categorical variables.
Variable Total Variable Total
Place of Residence Number of Sexual Partners
Rural 105 (44.7%) No partner 43 (18.3%)
Urban 130 (55.3%) Stable partner 182 (77.4%)
Educational Level Many partners 10 (4.3%)
Primary schools 11 (4.7%) Number of Women 235
Secondary schools 224 (95.3%)

Source: First author’s doctoral dissertation, Yirga AA [1].

Here, y; denotes the vector of the response variable
representing CD4 cell counts, g(-) is the log link function,
and the outcome follows a negative binomial distribution
with mean = p; and variance = p; + 8p,”. The terms vy,
represent parametric regression coefficients, fi(x;) are
smooth, nonparametric functions of the covariates X, and
the random effects b, are assumed to follow a normal
distribution with mean zero and covariance matrix G,,
denoted as b,~N(0,G,) [1, 29, 32, 34, 40].

The proposed model (10) was fitted using the R
package mgcv with the gagmm command [52]. The gamm
command is designed to avoid overfitting by penalizing
excessively ‘wiggly’ lines, so it is possible to apply this
penalty to all continuous covariates within smoothing
functions. The model assesses the level of support for a
‘wiggly’ shape based on the data [31]. Additionally, there
are multiple options available for controlling model
smoothness with splines. Model (10b) was fitted using
thin-plate (tp) shrinkage splines in the R package mgcv,
and convergence was achieved. Thin plate shrinkage
splines have certain advantages, such as not requiring
knot selection and providing efficient, stable
approximations. They can also be constructed for smooths
of multiple covariates simultaneously [53]. Furthermore,
the shrinkage smoothers obtained through the use of the
‘bs’ option within the ‘s’ command are designed in a way
that allows them to be penalized and ultimately excluded
from the model entirely, resulting in smooth terms that do
not contribute to the model [37, 48]. The model output
consists of two parts: a parametric component and a
smooth (nonparametric) component. The smoother
coefficients (represented by y,’s) are embedded within the
smoothers and are generally difficult to interpret. To fit a
smoother for a specific predictor, the ‘s’ function can be
utilized within the ‘gamm’ command [52]. The degree of

smoothing in a smoother is quantified by the effective
degrees of freedom (edf), which provide information on
the curvature of the fitted line. A relatively high edf value
(= 8) suggests that the curve is highly non-linear, while a
smoother with an edf of 1 indicates that the relationship
with the outcome is linear [31, 48].

Using the proposed additive negative binomial mixed-
effects model (model (10)), Table 3 displays the logarithm
of the expected CD4 count in the form of parameter
coefficients and the approximate significance of the
smooth terms. The table indicates that the baseline viral
load and initiation of HAART have a significant impact on
the progression of patients’ CD4 count. The ‘parametric
coefficients’ section reveals that the patients’ viral load at
the baseline has an unfavorable effect on the log of
expected CD4 count, even with minimal changes in units.
In addition, the expected number of CD4 cells for a patient
who initiates HAART increases by 1.233 (****) units (95%
CI: 1.851e-01 to 2.333e-01) in comparison to pre-HAART
initiation, while other variables are kept constant. To
improve clinical interpretability, the effect of baseline viral
load was rescaled to reflect a 1-log,, increase. A one-log,,
higher viral load was associated with an estimated 1.58 x
107° decrease in expected CD4 count (95% CI: —2.50 x
107° to —6.58 x 107).

The results of edf from Table 3 indicate that age (edf =
14.24, p-value < 2e-16) and time (edf = 10.343, p-value <
2e-16) variables have a notably significant non-linear
effect on the CD4 count of patients. The level of spline for
baseline BMI (edf = 3.044, p-value = 2.21e-06) shows a
significant non-linear relationship with the response
variable. (Fig. 1) depicts the fitted penalized spline plots
obtained from the analysis, with the shaded area
representing the approximate 95% confidence bands at
each point. The y-axis displays the effect of the smooth
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term, with ‘s’ denoting the smooth term and the number in
the parentheses indicating the corresponding smooth
term’s edf value [34]. Upon visual inspection of (Fig. 1), it
is apparent that the overall shape of the smoothers
indicates a higher progression of CD4 counts over time.
The increment rate is observed to be low for the initial
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four years (48 months) and then gradually increases. An
increase in CD4 count over time may provide evidence of
long-term benefits of HAART. The smooth terms age and
baseline BMI also show similar relationships, with older
patients and those with higher BMI at enrollment having a
higher CD4 count.

Table 3. The regression results of the additive negative binomial mixed-effects model.

Parameter Coefficients Estimate Std. Error t-value 95% CI of the Estimate p-value
Intercept 6.334e+00 1.172e-01 54.053 (6.104e+00, 6.564e+00) < 2e-16
Baseline viral load -1.581e-07 4.709e-08 -3.358 (-2.504e-07, 0.00079
-6.582e-08)
Educational level (ref.= Primary school)
Secondary school | -1500e01 | 1.056e01 | -1.420 | (-3.570e-01, 5.703e-02) 0.15564
HAART initiation (ref.= Pre HAART initiation)
Post HAART initiation | 2092e00 | 1.220e02 | 17021 | (1.851e-01, 2.333e-01) <2e-16
Place of residence (ref.= Rural)
Urban | 3569e02 |  4367e02 | 0817 | (-4.989e-02, 1.213e-01) 0.41375
Number of sexual partners (ref.= No partner)
Stable partner 4.490e-02 5.529e-02 0.812 (-6.347e-02, 1.533e-01) 0.41679
Many partner -6.587e-02 1.116e-01 -0.590 (-2.847e-01, 1.529¢-01) 0.55521
Approximate Significance of Smooth Terms
Smooth Terms edf Ref.df F-value p-value
s(Age) 14.124 14.124 4.710 < 2e-16
s(Time in months) 10.343 10.343 37.692 < 2e-16
s(Baseline BMI) 3.044 3.044 9.759 2.21e-06
Source: First author’s doctoral dissertation, Yirga AA [1].
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Fig. (1). Estimated smooth curve for the GAMM model containing all smooth terms.

Source: First author’s doctoral dissertation, YAA [1].
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Fig. (2). Diagnostic plots for checking the adequacy of the fitted model.

Source: First author’s doctoral dissertation, YAA [1].

To validate the fitted model, model diagnostic graphs
were plotted and presented in Fig. (2). The normal
Quantile-Quantile (Q-Q) plot on the upper left is almost
straight, indicating that the distributional assumption is
reasonable. The histogram of residuals, shown on the
lower left, is approximately Gaussian. The residual plot
versus the fitted values (linear predictor) in the upper
right reveals that the variance is approximately constant
as the mean increases. In general, the observed values are
positively correlated with the fitted values, as
demonstrated in the lower right plot of (Fig. 2). However,
the blue smooth trend curve deviating considerably from
the red reference line (perfect prediction) at extremely
high values indicates systematic underprediction,
increasing variance heterogeneity across the prediction
range. Future studies should explore variance modeling
structures and potential transformations to improve model
performance across the full range of CD4 count values.
Influential observations with extremely high values may be
worth investigating.

4. DISCUSSION

It is assumed in multiple linear regression that the link
between the outcome variable (Y) and the predictors (X)
remains linear or monotonic across all values. However,
not all regressions need to be linear or have a specific

residuals

Observed Values

Resids vs. linear pred.

6.0 6.5

inear predictor

Observed vs Fitted Values

Fitted Values

structure, such as being monotonic. To some extent, this
issue can be addressed by using polynomials [54, 55].
However, polynomials may not always be desirable in
terms of the model’s fit properties because adding more
powers of the covariate (X) can create a model selection
problem. Moreover, increasing the number of powers of
the covariate (X) in the polynomial model may not always
improve the model's accuracy [56] and could lead to a
Runge phenomenon, which is the problem of oscillation at
the edges of an interval when using high-degree
polynomial interpolation points. Nonparametric regression
methods, like Locally Weighted Scatterplot Smoothing,
also known as the LOESS smoother, may be a better
option for generalization, since this method imposes no
restrictions on the functional form between the outcome
and the covariates, except that it requires smoothness.
This implies that if there are no restrictions, the fits will be
more computationally intensive. However, if LOESS
smoothers are correctly applied, they provide additional
information from the data; however, the information we
obtain depends on the selection of the smoothing
parameter, as is the case with kernel smoothing. GAMs
provide a solution to these problems by offering a
framework for modeling flexible, nonlinear relationships in
the data.
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GAM extends both multiple linear regression models
and GLMs, enabling the modeling of outcomes from the
exponential family, including continuous, discrete, count,
and proportion data. GAMs offer flexibility and are used to
better understand and analyze complex, nonlinear
relationships within data. They effectively characterize key
features of the relationship between the response variable
and the covariates by using smooth functions, such as
splines, which allow for a broad range of functional forms
[1]. To fit a GAM, one can use the gam function from the
mgcv package in R. When fitting a GAM, the covariate (X)
needs to be included in the s (smooth) function to specify a
flexible relationship. The flexibility of splines allows GAM
to capture various nonlinear aspects [1]. The flexible
smooths in GAMs are made of many smaller functions
called basis functions. Each smoother is the sum of several
basis functions, and each basis function is multiplied by a
coefficient, which is a parameter in the model. With GAMs,
it is possible to include a mixture of smooth, linear effects,
continuous, counts, or categorical variables in a multiple
regression model format. Not all terms in a GAM have to
be nonlinear, as it is possible to combine linear and
nonlinear terms. Adding a linear term does not require
repelling the predictor term in the s function. Linear terms
are particularly useful when we have categorical variables
as predictors in the GAM [1].

GAMM, a mixed-effects version of GAM, is the most
effective model for analyzing nonlinear trajectories in
longitudinal data [1]. The relationship between the
outcome variable and the predictors is often complex and
involves unknown functional forms of covariates, making
parametric models inflexible. As a result, this study
utilized the generalized additive mixed-effects approach.
For the analysis of the longitudinal CD4 count of HIV-
infected patients, this study utilized an additive negative
binomial mixed-effects model, which is an example of a
GAMM. The model accounted for non-parametric effects of
time, age, and baseline BMI, as well as parametric effects
of some available covariates. The analysis identified that
HAART initiation was significantly associated with higher
CD4 counts over time, while higher baseline viral load was
significantly associated with lower CD4 count over time,
consistent with established clinical understanding. The
analysis also revealed a significant nonlinear effect
involving age, baseline BMI, and time. The nonparametric
component indicated that older participants (above 40
years) tended to have higher progression of CD4 count,
and individuals with higher baseline BMI showed patterns
of CD4 improvement over follow-up. However, this does
not imply that patients with higher BMI should be
neglected clinically. Instead, the study suggests that BMI
plays a role in drug metabolism and can influence the
progression and immunological responses of HAART [1,
57, 58]. The findings may reflect underlying physiological
or metabolic factors, although such interpretations remain
speculative and cannot be confirmed by this observational
analysis.

The significant nonlinear effect of time suggested that
CD4 counts increased gradually and only began to rise
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more noticeably after several follow-up visits. Therefore,
the study emphasizes the importance of initiating effective
HAART immediately after HIV infection is confirmed to
suppress the increase of viral loads and induce potential
ART benefits that accumulate over time. HIV patients who
are not stable on HAART may be at higher risk of
developing illness if infected with OIs [1]. Viral load
rebound due to inconsistent ART use is a major concern in
HIV management. However, these findings should be
interpreted with caution, as the study was not designed to
assess underlying causal mechanisms. All interpretations
reflect main effects only, as no interaction terms with
HAART or between covariates were included in the model.
The nonlinear associations observed for age, baseline BMI,
and time reflect overall patterns in CD4 count trajectories
and should not be interpreted as modifying the effect of
HAART, as no interaction terms were included in the
model. Any potential treatment-modifying effects remain
speculative and would require explicit interaction
modeling in future analyses.

Moreover, the CAPRISA 002 cohort consists of high-
risk South African women, many of whom were sex
workers, representing a population that differs signi-
ficantly from other groups, such as men, lower-risk
women, or individuals from different geographic or socio-
economic settings. It must be noted that CD4 trajectories,
treatment access, and underlying health conditions may
vary across populations; therefore, the external validity of
our findings is limited, and causality cannot be inferred
from this study. The associations observed reflect patterns
within this specific cohort and may be influenced by
unmeasured confounding, selection processes, measure-
ment limitations, differential follow-up, or other cohort-
specific factors. The observational design, potential
selection bias at enrollment, differential loss to follow-up,
and measurement variability, such as the timing of CD4
and viral load assessments, may affect the interpretation
of estimated results. Therefore, the interpretation of these
findings requires appropriate caution.

5. LIMITATIONS OF THE STUDY

This study has several important limitations that
should be considered when interpreting the findings. The
analysis is based on an observational cohort, which limits
the ability to draw causal inferences about the relation-
ships between HAART initiation, viral load, demographic
factors, and CD4 count trajectories. Unmeasured con-
founding, selection processes, and time-dependent biases
may influence the observed associations. Additionally, the
data were collected during a historical period when ART
eligibility criteria and treatment guidelines differed from
current standards, which may affect the applicability of
the findings to contemporary clinical contexts.

Moreover, no formal power calculation was conducted
for this secondary analysis, and the study may be
underpowered to detect subtle nonlinear effects or
interactions. Even though the cohort included repeated
CD4 measurements, follow-up was unbalanced, with
participants contributing 2 to 61 observations. Irregular
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visit spacing and differential loss to follow-up may
introduce informative censoring or survivorship bias.
While the mixed-effects modeling framework accommo-
dates unbalanced data, residual bias cannot be fully
excluded.

Although model diagnostic plots generally support the
adequacy of the fitted model, certain limitations warrant
further investigation. Notably, the observed-versus-fitted
values plot indicates systematic underprediction at
extreme values, suggesting increasing heterogeneity in
variance across the prediction range. This pattern may
reduce model accuracy in the upper tail and suggests
potential instability driven by influential observations with
unusually high CD4 values, which may reflect biological
variability or measurement inconsistencies not fully
accounted for by the current model.

To improve model performance, future studies should
explore more flexible variance structures, such as
heteroscedastic models or appropriate data transfor-
mations, to better capture the full range of CD4 counts.
Influence diagnostics were conducted in a previous study
by Yirga et al [5], which may inform strategies to mitigate
the effect of extreme observations in future analyses.
These refinements would enhance predictive reliability
and offer deeper insights into CD4 progression under
HAART, especially for patients with unusual immuno-
logical responses.

Together, these limitations highlight the need for
cautious interpretation of the findings and underscore the
value of future studies incorporating causal inference
methods, updated cohorts, and more flexible modeling
frameworks.

CONCLUSION

This study employed an additive negative binomial
mixed-effects model to investigate the progression of CD4
cell counts among HIV-infected participants, incorporating
both parametric and nonparametric covariates. The results
indicate that baseline viral load and HAART initiation were
significantly associated with patterns of CD4 count over
time. Higher baseline viral load was associated with lower
expected CD4 levels, whereas HAART initiation yielded a
substantial increase in CD4 count, highlighting its
treatment benefit.

The nonparametric components of the model revealed
pronounced nonlinear effects of time, age, and baseline
BMI. The edf and corresponding p-values indicated that
these variables demonstrated statistically significant and
complex influences on CD4 progression. Notably, CD4
counts increased gradually over follow-up, with a more
pronounced rise after approximately 4 years, suggesting
long-term immunological benefits of sustained HAART;
however, this pattern should be interpreted as descriptive
rather than causal. Additionally, older age and higher
baseline BMI were positively associated with improve-
ments in CD4 count, potentially reflecting underlying
physiological factors such as drug metabolism and
immune responsiveness.
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These findings reinforce the importance of timely and
consistent initiation of HAART following HIV exposure to
mitigate viral load and optimize long-term immunological
outcomes. The observed nonlinear dynamics further
emphasize the need for individualized treatment strategies
that account for patient-specific characteristics, including
age and BMI. Moreover, the potential for viral load
rebound due to inconsistent ART use remains a critical
concern in HIV management, underscoring the necessity
of adherence support and ongoing clinical monitoring.
Overall, the findings describe patterns of CD4 evolution in
this cohort and should not be interpreted as clinical
recommendations. Future work incorporating causal
inference methods or survival/competing-risk frameworks
may help clarify the mechanisms underlying these
associations.

Survival data analysis is a statistical method used to
analyze data in which the variable of interest is the time
until a certain event occurs [59]. This is also known as
competing risk analysis when there are multiple events.
The concept of competing risks is based on the idea that
individuals are exposed to several hazards that can cause
an event or experience multiple types of the same event
(competing events), which will be addressed in future
research.
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